首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Nerve growth factor (NGF) mRNAs were detected and quantified in a variety of normal and neoplastic human tissues by northern blot hybridization. Human heart contained the highest NGF mRNA levels, whereas lower but comparable levels were found in the placenta, prostate, and kidney. All tissues examined coexpressed the low-affinity NGF receptor (LNGFR), whereas none of these tissues expressed the high-affinity NGF receptor encoded by the trk protooncogene. The widespread distribution of the LNGFR suggests that it plays a role in the regulation of normal cell growth. No overexpression of NGF or LNGFR mRNA was detected in neoplastic tissues, whereas LNGFR-like immunoreactivity was localized outside of tumor cells. Transforming growth factor-alpha and protooncogene c-fos expression in these tissues did not show a systematic correlation with NGF/LNGFR expression. Furthermore, regulation of the human NGF gene was studied in DU145 cells, a prostatic adenocarcinoma cell line that synthesizes significant NGF mRNA levels. Serum induced, whereas dexamethasone inhibited, NGF mRNA synthesis in these cells. Serum induction was preceded by a rapid and transient activation of the c-fos protooncogene.  相似文献   

4.
5.
A myriad of gene induction events underlie nerve growth factor (NGF)-induced differentiation of PC12 cells. To dissect the signal transduction pathways which lead to NGF actions, we have assessed the relative roles of NGF receptor, Src, Ras, and Raf activities in mediating specific gene inductions. We have used the PC12 cell line as well as sublines which inducibly express activated forms of either Src, Ras, or Raf or a dominant inhibitory form of Ras (p21N17 Ras) to study the expression of multiple NGF-inducible mRNAs. The NGF induction of NGFI-A, transin, and VGF mRNAs was mimicked by activated forms of Src, Ras, or Raf and was blocked by p21N17 Ras. The NGF induction of SCG10 mRNA was mimicked only by activated Src and Ras and was blocked by p21N17 Ras, while the induction of Thy-1 mRNA was mimicked only by activated Src and was not blocked by p21N17 Ras. The NGF induction of mRNAs for two sodium channel types was neither mimicked by any activated oncoprotein nor blocked by p21N17 Ras. From these and previous results, we suggest a model in which a linear order of NGF receptor, Src, Ras, and Raf activities is used by NGF to elicit gene inductions. These signaling components define branchpoints in the pathway to specific gene induction events, providing a mechanism for generating a host of diverse NGF actions.  相似文献   

6.
7.
8.
To investigate the role of the gp140trk receptor tyrosine kinase in nerve growth factor (NGF)-induced differentiation, we have overexpressed gp140trk in the NGF-responsive PC12 cell line. Here we demonstrate that overexpression of gp140trk results in marked changes in NGF-induced differentiation. Whereas PC12 cells elaborated neurites after 2 days of continuous exposure to NGF, PC12 cells overexpressing gp140trk by 20-fold(trk-PC12) began this process within hours. Compared with wild-type PC12 cells, trk-PC12 exhibited an increase in both high and low affinity NGF-binding sites. Furthermore, trk-PC12 cells displayed an enhanced level of NGF-dependent gp140trk autophosphorylation, and this activity was sustained for many hours following ligand binding. The tyrosine phosphorylation or activity of several cellular proteins, such as PLC-gamma 1, PI-3 kinase, and Erk1 and the expression of the mRNA for the late response gene transin were also sustained as a consequence of gp140trk overexpression. The data indicate that overexpression of gp140trk in PC12 cells markedly accelerates NGF-induced differentiation pathways, possibly through the elevation of gp140trk tyrosine kinase activity.  相似文献   

9.
10.
PC12 cells serve as a model for exploring nerve growth factor (NGF)-stimulated signal pathways that mediate neural differentiation. We previously demonstrated that neurofilament light chain (NFLC) gene induction by NGF requires collaborative extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling. Herein, we investigate the broader requirement for integrated ERK and JNK signaling in NGF-stimulated gene expression. NGF stimulates differentiation as well as maintenance of cell viability while insulin-like growth factor-1 (IGF-1) stimulates only trophic actions in PC12 cells. Affymetrix Genechips were used to identify genes whose expression specifically increased in response to NGF, but not IGF-1. From the set of NGF-specific genes, the induction by NGF of ten genes with diverse predicted cellular functions was tested for ERK and JNK pathway requirements using the protein kinase inhibitors, PD98059 and SP600125, respectively. Like NFLC, induction of urokinase plasminogen activator (uPAR), transin/matrix metalloproteinase 3 (MMP3), Fra-1 and transforming growth factor beta 1 (TGF beta 1) required collaborative ERK and JNK signaling while the increased expression of cortexin, rat collapsin response mediator protein 4 (rCRMP4), rat growth and transformation-dependent protein (RGT), and synapsin II required neither mitogen-activated protein kinase (MAPK) pathway. NGF-induction of the bradykinin B2 receptor and c-Ret mRNAs was partially inhibited by SP600125, but not PD98059. Reporter constructs containing the promoters for ERK/JNK-dependent genes (NFLC, transin, uPAR) as well as an ERK/JNK-independent gene (synapsin II) revealed that both sets of genes required functional Ras signaling for activation by NGF. Integrated signaling through the ERK and JNK MAPKs, therefore, represents a general conduit for NGF-dependent gene expression, but additional Ras-dependent signaling pathways distinct from the ERKs and JNKs must contribute as well. Thus, multiple signaling conduits control global differentiation-specific gene expression in PC12 cells.  相似文献   

11.
The regulation of chromogranin A mRNA was examined in PC12 cells after treatment with nerve growth factor, dexamethasone, or a combination of the two agents. PC12 cells have low levels of chromogranin A mRNA, and this does not change upon treatment with nerve growth factor. Dexamethasone treatment of these cells results in a 4-fold increase in the amount of chromogranin A mRNA. The dexamethasone-stimulated increase in chromogranin A mRNA is not apparent until at least 16 h after the addition of the drug and is maintained only with continuous culture in the presence of the drug. Dexamethasone and nerve growth factor together increase chromogranin A mRNA to the level seen with dexamethasone alone. Immunohistochemistry shows a similar pattern of protein accumulation within individual cells. Chromogranin B mRNA levels are unaltered by any of the drug treatments described. Treatment with dexamethasone plus NGF seems to be required for full expression of the adrenergic, neuronal phenotype in PC12 cells. Measurement of chromogranin A mRNA provides more specific delineation of neural differentiation and how it is influenced by hormones and growth factors.  相似文献   

12.
Induction of neurite formation by nerve growth factor (NGF) in PC12 pheochromocytoma cells can be efficiently inhibited by expressing a dominant negative mutant form of the small guanine nucleotide binding Ha-Ras protein in these cells. The block in NGF-induced neuritogenesis caused by inhibition of endogenous Ras proteins was found to be partially relieved by simultaneous stimulation of cAMP- or Ca++-dependent signaling pathways. Since expression of certain genes is believed to be involved in NGF-signaling leading to morphological differentiation, we decided to study the combined effects of NGF and second messenger analogs on gene expression in PC12 cell lines expressing different levels of the interfering Ras protein. We found NGF-second messenger combinations that induced normal c-fos, zif268 and nur77 early-response gene expression without neuritogenesis, and, conversely, cell lines in which certain combination treatments caused partial neuronal differentiation in the absence of substantial activation of these genes. Similarly, neurite outgrowth induced by combination treatments does not seem to require the activation of the late-response transin gene. Our results thus suggest a lack of strong correlation between NGF-stimulated early- and secondary-response gene induction and morphological differentiation.  相似文献   

13.
14.
15.
A dominant inhibitory mutation of Ha-ras which changes Ser-17 to Asn-17 in the gene product p21 [p21 (Asn-17)Ha-ras] has been used to investigate the role of ras in neuronal differentiation of PC12 cells. The growth of PC12 cells, in contrast to NIH 3T3 cells, was not inhibited by p21(Asn-17)Ha-ras expression. However, PC12 cells expressing the mutant Ha-ras protein showed a marked inhibition of morphological differentiation induced by nerve growth factor (NGF) or fibroblast growth factor (FGF). These cells, however, were still able to respond with neurite outgrowth to dibutyryl cyclic AMP and 12-O-tetradecanoylphorbol-13-acetate (TPA). Induction of early-response genes (fos, jun, and zif268) by NGF and FGF but not by TPA was also inhibited by high levels of p21(Asn-17)Ha-ras. However, lower levels of p21(Asn-17) expression were sufficient to block neuronal differentiation without inhibiting induction of these early-response genes. Induction of the secondary-response genes SCG10 and transin by NGF, like morphological differentiation, was inhibited by low levels of p21(Asn-17) whether or not induction of early-response genes was blocked. Therefore, although inhibition of ras function can inhibit early-response gene induction, this is not required to block morphological differentiation or secondary-response gene expression. These results suggest that ras proteins are involved in at least two different pathways of signal transduction from the NGF receptor, which can be distinguished by differential sensitivity to p21(Asn-17)Ha-ras. In addition, ras and protein kinase C can apparently induce early-response gene expression by independent pathways in PC12 cells.  相似文献   

16.
17.
18.
The sympathetic nervous system plays a central role in lipolysis and the production of leptin in white adipose tissue (WAT). In this study, we have examined whether nerve growth factor (NGF), a target-derived neurotropin that is a key signal in the development and survival of sympathetic neurons, is expressed and secreted by white adipocytes. NGF mRNA was detected by RT-PCR in the major WAT depots of mice (epididymal, perirenal, omental, mesenteric, subcutaneous) and in human fat (subcutaneous, omental). In mouse WAT, NGF expression was observed in mature adipocytes and in stromal vascular cells. NGF expression was also evident in 3T3-L1 cells before and after differentiation into adipocytes. NGF protein, measured by ELISA, was secreted from 3T3-L1 cells, release being higher before differentiation. Addition of the sympathetic agonists norepinephrine, isoprenaline, or BRL-37344 (beta(3)-agonist) led to falls in NGF gene expression and secretion by 3T3-L1 adipocytes, as did IL-6 and the PPARgamma agonist rosiglitazone. A substantial decrease in NGF expression and secretion occurred with dexamethasone. In contrast, LPS increased NGF mRNA levels and NGF secretion. A major increase in NGF mRNA level (9-fold) and NGF secretion (相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号