首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pig major histocompatibility complexDRB genes were studied by polymerase chain reaction (PCR) amplification of exon 2 from eight domestic pigs and two European wild boars. Sequence comparisons together with a phylogenetic analysis showed the existence of at least threeDRB genes of which only one appears to be expressed. The two putativeDRB pseudogenes contained delections in exon 2, making it possible to confirm the presence of three non-allelicDRB genes by analyzing the length polymorphism of the amplified PCR products. The expressed gene shows allelic polymorphism at the same positions as in the humanDRB1 gene. In addition this pig gene shows extensive allelic polymorphism at positions 84–88, whereas, e.g., humanDRB genes do not. Surprisingly, the the two putativeDRB pseudogenes also display a considerable amount of allelic polymorphism, albeit of a different character as compared with the expressedDRB gene. Short stretches of sequences are shared between individual alleles at different loci. These sequence similarities cannot be due to natural selection, since two of the threeDRB genes involved are polymorphic pseudogenes constituting allelic series that have diverged after the inactivation event. Instead, the results indicate that the sequences have been exchanged between theDRB genes by intergenic recombination. The nucleotide sequence data reported in this paper have been submitted to the EMBL/GenBank nucleotide sequence databases and have been assigned the accession numbers L36567 (DRB1 * 1) L36568 (DRB1 * 2), L36569 (DRB1 * 3), L36570 (DRB1 * 4), L36571 (DRB1 * 5), L36572 (DRB1 * 6), L36573 (DRB1 * 7), L36574 (DRB1 * 8), L36575 (DRB2 * 1), L36576 (DRB2 * 2A), L36577 (DRB2 * 2B), L36578 (DRB2 * 2C), L36579 (DRB1 * 2D), L36580 (DRB2 * 3), L36581 (DRB2 * 4), L36582 (DRB3 * 1A), L36583 (DRB3 * 1B), L36584 (DRB3 * 1C), L36585 (DRB3 * 1D)  相似文献   

2.
Analysis of a Japanese population by oligonucleotide genotyping revealed that one Japanese HLA-DRw14 allele had a DRB1 genotype different from that of the known HLA-DRw14-related alleles, DRB1 * 1401 (DRw14-Dw9) and DRB1 * 1402 (DRw14-Dw16). The second exon of the DRB1 gene of the novel DRw14 allele (designated DRB1-14c) was amplified enzymatically and sequenced after cloning intto a plasmid vector. The amino acid sequence of the first domain in the DR1 chain encoded in the DRB1-14c allele was more similar to that of the DRB1 * 1401 allele (three amino acid substitutions).than to that of the DRB1 * 1402 allele (six amino acid substitutions). No polymorphic amino acid residue that could explain the common serologic HLA-DRw14 specificity was identified among the sequences of the three DRw14-related alleles. Sequence-specific oligonucleotides (SSOs) were synthesized on the basis of the DRB1-14c nucleotide sequence and used for genotyping of the Japanese population. These SSOs served as useful probes for identifying the DRB1-14c allele in a wide range of donors.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M33693.  相似文献   

3.
The Major Histocompatibility Complex (Mhc) genomic region of many vertebrates is known to contain at least one highly polymorphic class II gene that is homologous in sequence to one or other of the human Mhc DRB1 class II genes. The diversity of the avian Mhc class II gene sequences have been extensively studied in chickens, quails, and some songbirds, but have been largely ignored in the oceanic birds, including the flightless penguins. We have previously reported that several penguin species have a high degree of polymorphism on exon 2 of the Mhc class II DRB1-like gene. In this study, we present for the first time the complete nucleotide sequences of exon 2, intron 2, and exon 3 of the DRB1-like gene of 20 Humboldt penguins, a species that is presently vulnerable to the dangers of extinction. The Humboldt DRB1-like nucleotide and amino acid sequences reveal at least eight unique alleles. Phylogenetic analysis of all the available avian DRB-like sequences showed that, of five penguin species and nine other bird species, the sequences of the Humboldt penguins grouped most closely to the Little penguin and the mallard, respectively. The present analysis confirms that the sequence variations of the Mhc class II gene, DRB1, are useful for discriminating among individuals within the same penguin population as well those within different penguin population groups and species.The nucleotide sequence and amino acid sequence data reported in this paper have been submitted to the DDBJ database and have been assigned the accession numbers AB088371–AB088374, AB089199, AB154393–AB154399, and AB162144.  相似文献   

4.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M74030 for HLA DRB1*14.7, M74031 for HLA DRB1*14.8, and M74032 for HLA DRB1*14.6.  相似文献   

5.
Serological studies have suggested the presence of a new HLA-B39 subtype (B39.2) in the Japanese population. To identify the new HLA-B39 subtype and compare it with an other HLA-B39 subtype (B39.1), the genes encoding HLA-B39.1 (B * 39013) and B39.2 (B * 3902) have been cloned from Japanese. We have sequenced these genes and completed the sequence of HLA-B39.1 (B *39011 ) gene from a Caucasian that was partially sequenced. Comparison of the sequence data revealed that B * 3902 and B * 39013 differ by three nucleotide substitutions which result in a two amino acids change at residues 63 and 67, while one silent substitution at codon 312 is found between B * 39011 and B * 39013. These results suggest that B * 3902 has evolved from B * 39013 rather than B * 39011.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M94051 (HLA-B*39013), M94052 (HLA-B*39011), and M94053 (HLA-B*3902).  相似文献   

6.
Fifty-one patients with autoimmune hepatitis have been studied for HLA association by conventional serology and also by modified polymerase chain reaction-restriction fragment lenght polymorphism (PCR-RFLP) genotyping.HLA-DR4 was significantly associated with autoimmmune hepatitis (46 of 51 patients, 90.2%). DNA typing of the DRB1 gene for 43 DR4-positive patients by using the PCR-RFLP technique revealed that of 43 patients, 33 had DRB1 * 0405 (Dw15), five had DRB1 * 0406 (DwKT2), four had DRB1 * 0403 (Dw13a), two had DRB1 * 0401 (Dw4), two of 43 had DRB1 * 0407 (Dw13b) and one had DRB1 * 0408 (Dw14b). Thus, there was no significant difference in Dw frequencies between DR4-positive patients and DR4-positive healthy subjects. These findings suggest that the DR4-specific sequence (Val 11 and His 13 at amino acid positions 11 and 13, respectively), but not particular Dw-associated DR4 sequence, in the first domain of the DRB1 chain contributes to susceptibility to autoimmune hepatitis among Japanese. Interestingly, all five of the DR4-negative patients had the DR2 specificity (DRB1 1502 or 1601). Taken together, these results imply that the basic amino acids at position 13, which is present only on the DR2 and DR4 B1 molecules (Arg on DR2 and His on DR4), are most important for determining the predisposition to autoimmune hepatitis. Address correspondence and offprint requests to: M. Ota.  相似文献   

7.
HLA-DR haplotypes of the human major histocompatibility complex are organized in five different groups. They can be identified based on the serological specificity expressed by the polymorphic DRB1 locus and by the presence of a characteristic set of DRB genes. The nucleotide sequences of introns 4 and 5 of the two DRB genes (DRB1 * 01 and DRB6 * 01) from a DR1 haplotype and the three DRB genes (DRB1 * 15, DRB6 * 15, and DRB5 * 15), from a DR51 haplotype were determined. This study identified endogenous retroviral long terminal repeat elements (ERV9 LTR) located at identical positions in intron 5 of the DRB1 genes in both the DR1 and DR51 haplotypes. Phylogenetic analyses revealed a close evolutionary relationship between these two haplotypes. The DRB5 gene, unique for the DR51 haplotype, may have been lost by a recent gene deletion event creating the DR1 haplotype. A model for the evolution of the human DR haplotypes involving separate duplication and contraction events is presented. Received: 10 October 1995 / Revised: 22 November 1995  相似文献   

8.
The nucleotide sequence data reported here have been submitted to the Genome Sequence Database and have been assigned the accession number L32810. The name DRB1 *0811 was officially assigned by the WHO Nomenclature Committee in March 1994. This follows the policy that, subject to the conditions stated in the most recent Nomenclature Report (Bodmer et al. 1992), names will be assigned to new sequences as they are identified. Lists of such new names will be published in the following WHO Nomenclature Report  相似文献   

9.
Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are purine alkaloids that are present in high concentrations in plants of some species of Camellia. However, most members of the genus Camellia contain no purine alkaloids. Tracer experiments using [8-14C]adenine and [8-14C]theobromine showed that the purine alkaloid pathway is not fully functional in leaves of purine alkaloid-free species. In five species of purine alkaloid-free Camellia plants, sufficient evidence was obtained to show the occurrence of genes that are homologous to caffeine synthase. Recombinant enzymes derived from purine alkaloid-free species showed only theobromine synthase activity. Unlike the caffeine synthase gene, these genes were expressed more strongly in mature tissue than in young tissue. The nucleotide sequence data reported here have been deposited in the GenBank database under the accession numbers AB297451 (CjCS1), AB362882 (CgCS1), AB362883 (CgCS2), AB362884 (CkCS1), AB362885 (ClCS1), and AB362886 (CcCS2).  相似文献   

10.
Mhc-DRB diversity of the chimpanzee (Pan troglodytes)   总被引:1,自引:1,他引:0  
Fifty-four chimpanzee Patr-DRB and five human HLA-DRB second exons were cloned and sequenced from thirty-five chimpanzees and four B-cell lines and compared with known Mhc-DRB sequences of these two species. Equivalents of the HLA-DRB1 * 02,-DRB1 * 03, -DRB1 * 07 allelic lineages and the HLA-DRB3,-DRB4, -DRB5, -DRB6, and -DRB7 loci were all found in the chimpanzee. In addition, two chimpanzee Patr-DRB lineages (Patr-DRBX and -DRBY) were found for which no human counterparts have been described. None of the Patr-DRB sequences is identical to known HLA-DRB sequences. The Patr-DRB1 * 0702 and HLA-DRB1 * 0701 alleles are the most similar sequences in a comparison between the two species and differ by only two nucleotides out of 246 sequences. Equivalents of the HLA-DRB1 * 01,-DRB1 * 04, and -DRB1 * 09 alleles were not found in our sample of chimpanzees. A per locus comparison of the number of Patr-DRB alleles with the HLA-DRB alleles shows that the Patr-DRB3, -DRB4, -DRB5, and -DRB6 locus are, thus far, more polymorphic than ther human homologs. The polymorphism of the Patr-DRB1 locus seems to be less extensive than that reported for the HLA-DRB1 locus. Nevertheless, the Patr-DRB1 locus seems to be the most polymorphic of the Patr-DRB loci. Phylogenetic analyses indicate that the HLA-DRB1 * 09 allele may have originated from a recombination between a Mhc-DRB5 allele and the DRB1 allele of a Mhc-DR7 haplotype. Although recombination seems to increase the diversity of the Patr-DRB alleles, its contribution to the generation of Patr-DRB variation is probably low. Hence, most Patr-DRB diversity presumably accumulated via recurrent point mutations. Finally, two distinct PAtr-DRB haplotypes are deduced, one of which (the chimpanzee equivalent of the HLA-Dr7 haplotype) is probably older than 6–8 million years.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide database and have been assigned the accession numbers Mg6074-Mg6132. Correspondence to: M. Kenter.  相似文献   

11.
The distribution of the frequencies of BoLA-DRB3 gene alleles in the Iranian cattle breed Sistani was studied by the PCR-RFLP (“hemi-nested”) assay using restriction endonucleases RsaI, HaeIII and BstYI. In the examined cattle breed (65 animals) 32 alleles have been identified one of which being described for the first time (6.15% frequency). The nucleotide sequence of the polymorphic region of exon 2 of this allele has been determined and submitted in the GenBank database under accession number DQ486519. The submitted sequence has maximum homology (92%) with the previously described sequence DRB3-mRNA from Bos indicus (AccN X79346) and differs from it by 24 nucleotide substitutions which result in 16 amino acid substitutions. The peptide (on the basis of the reconstructed amino acid sequence) has 89% identity to the sequence encoded by the BIDRBF 188 locus (Bos indicus). The results obtained permit the sequence described by us to be considered as a new allele of the BoLA-DRB3 gene (DRB3.2 * X). The total frequency of the main six alleles (DRB3.2*8, *10, *11, *20, *34 and *X) occurring with a frequency of over 5% is about 60% in Iranian Sistani cattle. Fifteen alleles have <1% frequency. The highest frequency was observed for DRB3.2*8 allele (21.54%) like in other previously described breeds of Bos indicus (up to 23.07%). The Iranian breed Sistani has a high level of similarity by the spectrum of BoLA-DRB3 alleles and their frequencies to other Bos indicus breeds and significantly differs by these criteria from the Bos Taurus breeds. The Iranian Sistani herd under study includes alleles associated with to resistance to leukemia (DRB3.2*11 and *23) and to different forms of mastitis (DRB3.2* 2, *7, *11, *23 and *24) although their frequencies are low (from 0.77 to 5.37%). On the whole, a high level of diversity of BoLA-DRB3 gene alleles and the availability of alleles associated with resistance to different diseases makes this breed of interest for breeding practice. The article is published in the original.  相似文献   

12.
The DRB region of the human major histocompatibility complex displays length polymorphism: Five major haplotypes differing in the number and type of genes they contain have been identified, each at appreciable frequency. In an attempt to determine whether this haplotype polymorphism, like the allelic polymorphism, predates the divergence of humansfrom great apes, we have worked out the organization of the DRB region of the chimpanzee Hugo using a combination of chromosome walking, pulsed-field gel electrophoresis, and sequencing. Hugo is a DRB homozygote whose single DRB haplotype is some 440 kilobases (kb) long and contains five genes. At least one and possibly two of these are pseudogenes, while three are presumably active genes. The genes are designated DRB * A0201, DRB2 * 0101, DRB3 * 0201, DRB6 * 0105, and DRB5 * 0301, and are arranged in this order on the chromosome. The DRB2 and DRB3 genes are separated by approximately 250 kb of sequence that does not seem to contain any additional DRB genes. The DRB * A0201 gene is related to the DRB1 gene of the human DR2 haplotype; the DRB2 * 0101 and DRB3 * 0201 genes are related to the DRB2 and DRB3 genes of the human DR3 haplotype, respectively; the DRB6 * 0105 and DRB5 * 0301 genes are related to the DRBVI and DRB5 genes of the human DR2 haplotype, respectively. Thus the Hugo haplotype appears to correspond to the entire human DR2 haplotype, into which a region representing a portion of the human DR3 haplotype has been inserted. Since other chimpanzees have their DRB regions organized in different ways, we conclude that, first, the chimpanzee DRB region, like the human DRB region, displays length polymorphism; second, some chimpanzee DRB haplotypes are longer than the longest known human DRB haplotypes; third, in some chimpanzee haplotypes at least, the DRB genes occur in combinations different from those of the human haplotypes; fourth, and most importantly, certain DRB gene combinations have been conserved in the evolution of chimpanzees and humans from their common ancestors. These data thus provide evidence that not only allelic but also haplotype polymorphism can be passed on from one species to another in a given evolutionary lineage.  相似文献   

13.
The Major Histocompatibility Complex (Mhc) class II DRB locus of vertebrates is highly polymorphic and some alleles may be shared between closely related species as a result of balancing selection in association with resistance to parasites. In this study, we developed a new set of PCR primers to amplify, clone, and sequence overlapping portions of the Mhc class II DRB-like gene from the 5′UTR end to intron 3, including exons 1, 2, and 3 and introns 1 and 2 in four species (20 Humboldt, six African, five Magellanic, and three Galapagos penguins) of penguin from the genus Spheniscus (Sphe). Analysis of gene sequence variation by the neighbor-joining method of 21 Sphe sequences and 20 previously published sequences from four other penguin species revealed overlapping clades within the Sphe species, but species-specific clades for the other penguin species. The overlap of the DRB-like gene sequence variants between the four Sphe species suggests that, despite their allopatric distribution, the Sphe species are closely related and that some shared DRB1 alleles may have undergone a trans-species inheritance because of balancing selection and/or recent rapid speciation. The new primers and PCR assays that we have developed for the identification of the DRB1 DNA and protein sequence variations appear to be useful for the characterization of the molecular evolution of the gene in closely related Penguin species and might be helpful for the assessment of the genetic health and the management of the conservation and captivity of these endangered species. The nucleotide sequence and amino acid sequence data reported in this paper have been submitted to the DDBJ database and have been assigned the accession numbers AB301478, AB301944–AB301950, AB302087–AB302090, AB302190–AB302192, AB302843, AB302844, and AB303942–AB303945.  相似文献   

14.
The relative distributions of 480DR2-relatedDR, DQ haplotypes have been determined in Australian Aborigines, Papua New Guinean Highlanders, coastal Melanesians, Micronesians, Polynesians, Javanese, and Southern and Northern Chinese. Using sequence-specific oligonucleotides (SSOs) for hybridization of polymerase chain reaction (PCR) products from DRBI,DRBS,DQA1, andDQBI genes, 15 differentDR2-related haplotypes were identified. The predominantDR2 haplotype in Oceania involved a novel combination ofDRBI * 1502,DRB5 * 0101 alleles; this haplotype occurred sporadically in Java, but not in China. In Southern China, the most frequent DR2 haplotype involved the unusual arrangementDRB1 * 1602,DRB5 * 0101; alternatively,DRB1 * 1602 was associated with a newDRB5 SSO pattern. This study has important implications for molecular HLA-typing protocols that assume particularDRB1 DRB5 orDR,DQ linkage relationships. Further, the novelDRBI,DRB5 haplotype in Oceania suggests that the mixed lymphocyte culture (MLC) determinants Dw2 and Dw12 are discriminated by codon 86 at theDRBI locus.  相似文献   

15.
The HLA-A9 family has been characterized as possessing two well defined specificities; HLA-A23 and A24. Serological studies have suggested the presence of a third member of this family HLA-A9.3, however there is doubt surrounding the existence of this specificity. HLA-A23, A24, and the putative A9.3 proteins were analyzed biochemically by immunoprecipitation and isoelectric focusing. Both HLA-A24 and A9.3 have identical isoelectric points whereas A23 is different. We have sequenced cDNA encoding HLA-A23, A24, and A9.3. From the observed protein sequences, we found A9.3 to differ from A24 by two amino acid substitutions located in the 2 helix of the class I molecule. These substitutions are expected to significantly change the shape of the peptide binding cleft.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M64740 (HLA-A *2402); M64741 (HLA-A *2403); M64742 (HLA-A *2301). Address correspondence and offprint requests to: P. Parham.  相似文献   

16.
The structure of theDRB1 * 03 gene has been interpreted as the product of a gene conversion event involving aDRB3 gene as donor and resulting in the introduction of two short segments of the DRB3 sequence into theDRB1 locus. The serological counterpart of this double insertion is the TR81 specificity. Consequently, the TR81-specifying sequences can reside on eitherDRB1 orDRB3, or on both loci. Within each of the two sequence stretches a single nucleotide may be responsible for the generation of the TR81 alloantigen. Oligonucleotide probes corresponding to these stretches and to their allelic variants were constructed. They were used, under stringent hybridization conditions, to detect TR81-specifying sequences in the DNA ofHLA-homozygous cell lines carrying different haplotypes of the DRw52 family. Prior to hybridization the DNA was amplified with either DRB1-specific or DRB3-specific primers. Using this approach it was possible to perform a DNA typing of the TR81-specifying sites separately on both theDRB1 locus and theDRB3 locus.  相似文献   

17.
The major histocompatibility complex (Mhc) consists of class I and class II genes. In the humanMhc (HLA) class II genes, nineDRB loci have been identified. To elucidate the origin of these duplicated loci and allelic divergences at the most polymorphicDRBI locus, introns 4 and 5 as well as the 3′ untranslated region (altogether approximately 1,000 base pairs) of sevenHLA-DRB loci, threeHLA-DRBI alleles, and nine nonhuman primateDRB genes were examined. It is shown that there were two major diversification events inHLA-DRB genes, each involving gene duplications and allelic divergences. Approximately 50 million years (my) ago,DRBI *04 and an ancestor of theDRB1 *03 cluster (DRBI *03, DRBI*15, andDRB3) diverged from each other andDRB5, DRB7, DRB8, and an ancestor of theDRB2 cluster (DRB2, DRB4, andDRB6) arose by gene duplication. Later, about 25 my ago,DRBI *15 diverged fromDRBI*03, andDRB3 was duplicated fromDRBI *03. Then, some 20 my ago, the lineage leading to theDRB2 cluster produced two new loci,DRB4 andDRB6. TheDRBI *03 andDRBI *04 allelic lineages are extraordinarily old and have persisted longer than some duplicated genes. The orthologous relationships ofDRB genes between human and Old World monkeys are apparent, but those between Catarrhini and New World monkeys are equivocal because of a rather rapid expansion and contraction of primateDRB genes by duplication and deletion. Correspondence to: Y. Satta  相似文献   

18.
The nucleotide sequence data reported in this Papershave been submitted to the GenBank, EMBL, and DDBJ nucleotide sequence databases and have been assigned the accession numbers X79719 (RT1.A 1), X79720 (RT1.C 1), and X79721 (RT12.5)  相似文献   

19.
Although diversity within the HLA-DRB region is predominantly focused in the DRB1 gene, the second expressed DRB loci, DRB3, DRB4, and DRB5, also exhibit variation. Within DRB1 * 15 or DRB1 * 16 haplotypes, four new variants were identified: 1) two new DRB5 alleles, DRB5 * 0104 and DRB5 * 0204, 2) a haplotype carrying a DRB1 * 15 or * 16 allele without the usual accompanying DRB5 allele, and 3) a haplotype carrying a DRB5* 0101 allele without a DRB1 * 15 or * 16 allele. The evolutionary origins of these haplotypes were postulated based on their associations with the DRB6 pseudogene. Within HLA haplotypes which carry DRB3, a new DRB3 * 0205 allele and one unusual DRB3 association were identified. Finally, two new null DRB4 alleles are described: DRB4 * 0201N, which exhibits a deletion in the second exon, and a second allele, DRB4 * null, which lacks the second exon completely. Gene conversion-like events and variation in the number of functional genes through reciprocal recombination and inactivation contribute to the diversity observed in the second expressed HLA-DRB loci. Received: 2 November 1996 / Revised: 23 December 1996  相似文献   

20.
 One of the most common cattle major histocompatibility complex DRB3 alleles, * 0201, includes a deletion of codon 65 encoding one residue in the α-helical chain. The mutation is functionally interesting and is likely to influence peptide binding. Exon 2 of two additional del65 alleles, * 3301 and * 4101, have now been sequenced with the aim to investigate the evolutionary relationship of this allelic group. Despite a fairly large genetic distance between the three alleles (11–17 nucleotide substitutions causing 8–11 amino acid substitutions) we found clear indications of a common ancestry. The α-helical region was very similar or identical among the alleles whereas the β-strand region was quite divergent. The results indicated that interallelic recombination has contributed to the diversification of the del65 group. Deletion of codon 65 has also been found in a roe deer DRB1 allele and a cattle DQB3 allele. Sequence comparisons of the cattle and roe deer DRB del65 alleles refuted the possibility of a trans-species persistence of a del65 allelic lineage but the two species may share a short ancestral sequence motif including del65. In addition to del65, the cattle DQB3 allele did not show any striking sequence similarities to the DRB alleles. Received: 20 March 1997 / Revised: 17 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号