首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions between 20 drugs and a variety of synthetic DNA polymers and natural DNAs were studied by electric linear dichroism (ELD). All compounds tested, including several clinically used antitumour agents, are thought to exert their biological activities mainly by virtue of their abilities to bind to DNA. The selected drugs include intercalating agents with fused and unfused aromatic structures and several groove binders. To examine the role of base composition and base sequence in the binding of these drugs to DNA, ELD experiments were carried out with natural DNAs of widely differing base composition as well as with polynucleotides containing defined alternating and non-alternating repeating sequences, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT),poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC). Among intercalating agents, actinomycin D was found to be by far the most GC-selective. GC selectivity was also observed with an amsacrine-4-carboxamide derivative and to a lesser extent with methylene blue. In contrast, the binding of amsacrine and 9-aminoacridine was practically unaffected by varying the GC content of the DNAs. Ethidium bromide, proflavine, mitoxantrone, daunomycin and an ellipticine derivative were found to bind best to alternating purine-pyrimidine sequences regardless of their nature. ELD measurements provided evidence for non-specific intercalation of amiloride. A significant AT selectivity was observed with hycanthone and lucanthone. The triphenyl methane dye methyl green was found to exhibit positive and negative dichroism signals at AT and GC sites, respectively, showing that the mode of binding of a drug can change markedly with the DNA base composition. Among minor groove binders, the N-methylpyrrole carboxamide-containing antibiotics netropsin and distamycin bound to DNA with very pronounced AT specificity, as expected. More interestingly the dye Hoechst 33258, berenil and a thiazole-containing lexitropsin elicited negative reduced dichroism in the presence of GC-rich DNA which is totally inconsistent with a groove binding process. We postulate that these three drugs share with the trypanocide 4',6-diamidino-2-phenylindole (DAPI) the property of intercalating at GC-rich sites and binding to the minor groove of DNA at other sites. Replacement of guanines by inosines (i.e., removal of the protruding exocyclic C-2 amino group of guanine) restored minor groove binding of DAPI, Hoechst 33258 and berenil. Thus there are several cases where the mode of binding to DNA is directly dependent on the base composition of the polymer. Consequently the ELD technique appears uniquely valuable as a means of investigating the possibility of sequence-dependent recognition of DNA by drugs.  相似文献   

2.
Abstract

In the present work, we employed UV-VIS spectroscopy, fluorescence methods, and circular dichroism spectroscopy (CD) to study the interaction of dye Hoechst 33258, Hoechst 33342, and their derivatives to poly[d(AT)]·poly[d(AT)], poly(dA)·poly(dT), and DNA dodecamer with the sequence 5′-CGTATATATACG-3′. We identified three types of complexes formed by Hoechst 33258, Hoechst 33342, and methylproamine with DNA, corresponding to the binding of each drug in monomer, dimer, and tetramer forms. In a dimer complex, two dye molecules are sandwiched in the same place of the minor DNA groove. Our data show that Hoechst 33258, Hoechst 33342, and methylproamine also form complexes of the third type that reflects binding of dye associates (probably tetramers) to DNA. Substitution of a hydrogen atom in the ortho position of the phenyl ring by a methyl group has a little effect on binding of monomers to DNA. However it reduces strength of binding of tetramers to DNA. In contrast, a Hoechst derivative containing the ortho-isopropyl group in the phenyl ring exhibits a low affinity to poly(dA)·poly(dT) and poly[d(AT)]·poly[d(AT)] and binds to DNA only in the monomer form. This can be attributed to a sterical hindrance caused by the ortho-isopropyl group for side-by-side accommodation of two dye molecules in the minor groove. Our experiments show that mode of binding of Hoechst 33258 derivatives and their affinity for DNA depend on substituents in the ortho position of the phenyl ring of the dye molecule. A statistical mechanical treatment of binding of Hoechst 33258 and its derivatives to a polynucleotide lattice is described and used for determination of binding parameters of Hoechst 33258 and its derivatives to poly[d(AT)]·poly[d(AT)] and poly(dA)·poly(dT).  相似文献   

3.
In the present paper we report the results of a study on the base specificity and affinity of eight dyes potentially able to interact with DNA. These compounds include four triphenylmethane dyes used in histochemistry, auramine, "Hoechst 33258" and two acridines substituted with t-butyl groups. They were selected with regard to their inability to intercalate between the base pairs of helical polynucleotides due to structural limitations. Hydrodynamic studies performed with the DNA complexes of crystal violet and Hoechst 33258 confirmed our assumptions that compounds of this type bind to the outside of DNA. The main results from DNA binding studies indicate that the triphenylmethane dyes except p-fuchsin are bound with high preference to two adjacent A - T pairs while Hoechst 33258 seems to need three A - T pairs as the binding site. Model studies with synthetic polynucleotides revealed that not only a sequence of A - T pairs, but also their structural arrangement in a helix, is crucial for the high affinities observed for most of the ligands when interacting with natural DNA. Methyl green and Hoechst 33258 can be used for increasing the resolution power of cesium chloride density gradients for DNAs with different (A + T) content.  相似文献   

4.
The use of FTIR spectroscopy is made to study the interactions between polynucleotides and two series of minor groove binding compounds. The latter were developed and described previously as part of an ongoing program of rational design of modified ligands based on naturally occurring pyrrole amidine antibiotic netropsin, and varying the structure of bisbenzimidazole chromosomal stain Hoechst 33258. Characteristic IR absorptions due to the vibrations of thymidine and cytosine keto groups in polynucleotides containing AT and GC base pairs respectively are used to monitor their interaction with the added ligands. Although the two thiazole based lexitropsins based on netropsin structure differ in the relative orientation of nitrogen and sulfur atoms with respect to the concave edge of the molecules, they interact exclusively with the thymidine C2 = O carbonyl groups in the minor groove of the alternating AT polymer as evidenced by specific changes in the IR spectra. In the second series of compounds based on Hoechst 33258, the structure obtained by replacing the two benzimidazoles in the parent compound by a combination of pyridoimidazole and benzoxazole, exhibits changes in the carbonyl frequency region of poly dG.poly dC which is attributed to the ligand interaction at the minor groove of GC base pairs. In contrast, Hoechst 33258 itself interacts only with poly dA.poly dT. Weak or no interaction exists between the ligands and any of the polynucleotides at the levels of the phosphate groups or the deoxyribose units.  相似文献   

5.
The binding mode of the bisbenzimidazole derivative Hoechst 33258 to a series of DNAs and polynucleotides has been investigated by electric linear dichroism. Positive reduced dichroisms were measured for the poly(dA-dT).poly(dA-dT)- and poly(dA).poly(dT)-Hoechst complexes in agreement with a deep penetration of the drug into the minor groove. Similarly, the drug displays positive reduced dichroism in the presence of the DNAs from calf thymus, Clostridium perfringens and Coliphage T4. Conversely, negative reduced dichroisms were obtained when Hoechst 33258 was bound to poly(dG-dC).poly(dG-dC), poly(dA-dC).poly(dG-dT) and poly(dG).poly(dC) as well as with the GC-rich DNA from Micrococcus lysodeikticus indicating that in this case minor groove binding cannot occur. Substitution of guanosines for inosines induces a reversal of the reduced dichroism from negative to positive. Therefore, as anticipated it is the 2-amino group of guanines protruding in this groove which prevents Hoechst 33258 from getting access to the minor groove of GC sequences. The ELD data obtained with the GC-rich biopolymers are consistent with an intercalative binding. Competition experiments performed with the intercalating drug proflavine lend credence to the involvement of an intercalative binding rather than to an external or major groove binding of Hoechst 33258 at GC sequences.  相似文献   

6.
Abstract

The use of FTIR spectroscopy is made to study the interactions between polynucleotides and two series of minor groove binding compounds. The latter were developed and described previously as part of an ongoing program of rational design of modified Ligands based on naturally occurring pyrrole amidine antibiotic netropsin, and varying the structure of bis- benzimidazole chromosomal stain Hoechst 33258. Characteristic IR absorptions due to the vibrations of thymidine and cytosine keto groups in polynucleotides containing AT and GC base pairs respectively are used to monitor their interaction with the added Ligands. Although the two thiazole based lexitropsins based on netropsin structure differ in the relative orientation of nitrogen and sulfur atoms with respect to the concave edge of the molecules, they interact exclusively with the thymidine C2=O carbonyl groups in the minor groove of the alternating AT polymer as evidenced by specific changes in the IR spectra.

In the second series of compounds based on Hoechst 33258, the structure obtained by replacing the two benzimidazoles in the parent compound by a combination of pyridoimidazole and benzoxazole, exhibits changes in the carbonyl frequency region of poly dG · poly dC which is attributed to the ligand interaction at the minor groove of GC base pairs. In contrast, Hoechst 33258 itself interacts only with poly dA · poly dT. Weak or no interaction exists between the Ligands and any of the polynucleotides at the levels of the phosphate groups or the deoxyribose units.  相似文献   

7.
The crystal structure of the complex between the dodecamer d(CGCGAATTCGCG) and a synthetic dye molecule Hoechst 33258 was solved by X-ray diffraction analysis and refined to an R-factor of 15.7% at 2.25 A resolution. The crescent-shaped Hoechst compound is found to bind to the central four AATT base pairs in the narrow minor groove of the B-DNA double helix. The piperazine ring of the drug has its flat face almost parallel to the aromatic bisbenzimidazole ring and lies sideways in the minor groove. No evidence of disordered structure of the drug is seen in the complex. The binding of Hoechst to DNA is stabilized by a combination of hydrogen bonding, van der Waals interaction and electrostatic interactions. The binding preference for AT base pairs by the drug is the result of the close contact between the Hoechst molecule and the C2 hydrogen atoms of adenine. The nature of these contacts precludes the binding of the drug to G-C base pairs due to the presence of N2 amino groups of guanines. The present crystal structural information agrees well with the data obtained from chemical footprinting experiments.  相似文献   

8.
A Abu-Daya  P M Brown    K R Fox 《Nucleic acids research》1995,23(17):3385-3392
We have examined the interaction of distamycin, netropsin, Hoechst 33258 and berenil, which are AT-selective minor groove-binding ligands, with synthetic DNA fragments containing different arrangements of AT base pairs by DNase I footprinting. For fragments which contain multiple blocks of (A/T)4 quantitative DNase I footprinting reveals that AATT and AAAA are much better binding sites than TTAA and TATA. Hoechst 33258 shows that greatest discrimination between these sites with a 50-fold difference in affinity between AATT and TATA. Alone amongst these ligands, Hoechst 33258 binds to AATT better than AAAA. These differences in binding to the various AT-tracts are interpreted in terms of variations in DNA minor groove width and suggest that TpA steps within an AT-tract decrease the affinity of these ligands. The behaviour of each site also depends on the flanking sequences; adjacent pyrimidine-purine steps cause a decrease in affinity. The precise ranking order for the various binding sites is not the same for each ligand.  相似文献   

9.
Hoechst dye 33258 is a planar drug molecule that binds to the minor groove of DNA, especially where there are a number of A.T base pairs. We have solved the structure of the Hoechst dye bound to the DNA dodecamer d(CGCGATATCGCG) at 2.3 A. This structure is compared to that of the same dodecamer with the minor-groove-binding drug netropsin bound to it, as well as to structures that have been solved for this Hoechst dye bound to a DNA dodecamer containing the central four base pairs with the sequence AATT. We find that the position of the Hoechst drug in this dodecamer is quite different from that found in the other dodecamer since it has an opposite orientation compared to the other two structures. The drug covers three of the four A.T base pairs and extends its piperazine ring to the first G.C base pair adjacent to the alternating AT segment. Furthermore, the drug binding has modified the structure of the DNA dodecamer. Other DNA dodecamers with alternating AT sequences show an alternation in the size of the helical twist between the ApT step (small twist) and the TpA step (large twist). In this structure the alternation is reversed with larger twists in the ApT steps than in the TpA step. In addition, there is a rotation of one of the thymine bases in the DNA dodecamer that is associated with hydrogen bonding to the Hoechst drug. This structure illustrates the considerable plasticity found in the DNA molecule when it binds to different planar molecules inserted into the minor groove.  相似文献   

10.
Abstract

The drugs Hoechst 33258, berenil and DAPI bind preferentially to the minor groove of AT sequences in DNA Despite a strong selectivity for AT sites, they can interact with GC sequences by a mechanism which remains so far controversial. The 2-amino group of guanosine represents a steric hindrance to the entry of the drugs in the minor groove of GC sequences. Intercalation and major groove binding to GC sites of GC-rich DNA and polynucleotides have been proposed for these drugs. To investigate further the mode of binding of Hoechst 33258, berenil and DAPI to GC sequences, we studied by electric linear dichroism the mutual interference in the DNA binding reaction between these compounds and a classical intercalator, proflavine, or a DNA-threading intercalating drug, the amsacrine-4-carboxamide derivative SN16713. The results of the competition experiments show that the two acridine intercalators markedly affect the binding of Hoechst 33258, berenil and DAPI to GC polynucleotides but not to DNA containing AT/GC mixed sequences such as calf thymus DNA Proflavine and SN16713 exert dissimilar effects on the binding of Hoechst 33258, berenil and DAPI to GC sites. The structural changes in DNA induced upon intercalation of the acridine drugs into GC sites are not identically perceived by the test compounds. The electric linear dichroism data support the hypothesis that Hoechst 33258, berenil and DAPI interact with GC sites via a non-classical intercalation process.  相似文献   

11.
A new asymmetric cyanine dye has been synthesised and its interaction with different DNA has been investigated. In this dye, BEBO, the structure of the known intercalating cyanine dye BO has been extended with a benzothiazole substituent. The resulting crescent-shape of the molecule is similar to that of the well-known minor groove binder Hoechst 33258. Indeed, comparative studies of BO illustrate a considerable change in binding mode induced by this structural modification. Linear and circular dichroism studies indicate that BEBO binds in the minor groove to [poly (dA-dT)](2), but that the binding to calf thymus DNA is heterogeneous, although still with a significant contribution of minor groove binding. Similar to other DNA binding asymmetric cyanine dyes, BEBO has a large increase in fluorescence intensity upon binding and a relatively large quantum yield when bound. The minor groove binding of BEBO to [poly (dA-dT)](2) affords roughly a 180-fold increase in intensity, which is larger than to that of the commonly used minor groove binding probes DAPI and Hoechst 33258.  相似文献   

12.
4', 6-Diamidine-2-phenylindole forms fluorescent complexes with synthetic DNA duplexes containing AT, AU and IC base pairs; no fluorescent complexes were observed with duplexes containing GC base pairs or with duplexes containing a single AT base pair sandwiched between GC pairs. The binding site size is one molecule of dye per 3 base pairs. The intrinsic binding constants are higher for alternating sequence duplexes than for the corresponding homopolymer pairs. With the exception of the four-stranded helical poly rI which exhibits considerable fluorescence enhancement upon binding of the ligand, none of the single- or multi- stranded polyribonucleotides and ribo-deoxyribonucleotide hybrid structures form fluorescent complexes with the dye. Poly rI is the only RNA which forms a DNA B-like structure (Arnott et al. (1974) Biochem. J. 141, 537). The B conformation of the helix and the absence of guanine appear to be the major determinants of the specificity of the fluorescent binding mode of the dye. Nonfluorescent interactions of the dye with polynucleotides are nonspecific; UV absorption and circular dichroic spectra demonstrate binding to synthetic single- and double-stranded DNA and RNA analogs, including those containing GC base pairs.  相似文献   

13.
Abstract

The ability of polyamines to displace the minor groove-binding dye Hoechst 33258 from calf thymus DNA was investigated. Polyamines displace non-specific DNA phosphate bound Hoechst in a charge-dependent fashion, but show very little ability to displace the high affinity binding of Hoechst in the minor groove of DNA. This high affinity binding is, however, sensitive to ethidium bromide and the minor groove binding drug berenil. These studies suggest that polyamines probably bind DNA in the minor groove very weakly, if at all, relative to known minor groove binding agents.  相似文献   

14.
The structure of DAPI bound to DNA   总被引:15,自引:0,他引:15  
The structure of the DNA fluorochrome 4'-6-diamidine-2-phenyl indole (DAPI) bound to the synthetic B-DNA oligonucleotide C-G-C-G-A-A-T-T-C-G-C-G has been solved by single crystal x-ray diffraction methods, at a resolution of 2.4 A. The structure is nearly isomorphous with that of the native DNA molecule alone. With one DAPI and 25 waters per DNA double helix, the residual error is 21.5% for the 2428 reflections above the 2-sigma level. DAPI inserts itself edgewise into the narrow minor groove, displacing the ordered spine of hydration. DAPI and a single water molecule together span the four AT base pairs at the center of the duplex. The indole nitrogen forms a bifurcated hydrogen bond with the thymine O2 atoms of the two central base pairs, as with netropsin and Hoechst 33258. The preference of all three of these drugs for AT regions of B-DNA is a consequence of three factors: (1) The intrinsically narrower minor groove in AT regions than in GC regions of B-DNA, leading to a snug fit of the flat aromatic drug rings between the walls of the groove. (2) The more negative electrostatic potential within the minor groove in AT regions, attributable in part to the absence of electropositive-NH2 groups along the floor of the groove, and (3) The steric advantage of the absence of those same guanine-NH2 groups, thus permitting the drug molecule to sink deeper into the groove. Groove width and electrostatic factors are regional, and define the relative receptiveness of a section of DNA since they operate over several contiguous base pairs. The steric factor is local, varying from one base pair to the next, and hence is the means of fine-tuning sequence specificity.  相似文献   

15.
The interaction of the bisbenzimidazole dye 33258 Hoechst with DNA and chromatin is characterized by changes in absorption, fluorescence, and circular dichroism measurements. At low dye/phosphate ratios, dye binding is accompanied by intense fluorescence and circular dichroism and exhibits little sensitivity to ionic strength. At higher dye/phosphate ratios, additional dye binding can be detected by further changes in absorptivity. This secondary binding is suppressed by increasing the ionic strength. A-T rich DNA sequences enhance both dye binding and fluorescence quantum yield, while chromosomal proteins apparently exclude the dye from approximately half of the sites available with DNA. Fluorescence of the free dye is sensitive to pH and, below pH 8, to quenching by iodide ion. Substitution of 5-bromodeoxyuridine (BrdU) for thymidine in synthetic polynucleotides, DNA, or unfixed chromatin quenches the fluorescence of bound dye. This suppression of dye fluorescence permits optical detection of BrdU incorporation associated with DNA synthesis in cytological chromosome preparations. Quenching of 33258 Hoechst fluorescence by BrdU can be abolished by appropriate alterations in solvent conditions, thereby revealing changes in dye fluorescence of microscopic specimens specifically due to BrdU incorporation.  相似文献   

16.
BACKGROUND: The chromosomal stain, Hoechst 33258, binds to the minor groove of the DNA double helix and specifically recognizes a run of four A-T base pairs. Extensive biochemical and biophysical studies have been aimed at understanding the binding of the dye to DNA at the atomic level. Among these studies there have been several crystal structure determinations and some preliminary structural studies by NMR. RESULTS: On the basis of our own previously reported NMR data, we have now determined the three-dimensional solution structure of the 1:1 complex between Hoechst 33258 and the self-complementary DNA duplex d(GTGGAATTCCAC)2. Two coexisting families of con formers, which exhibit differences in their intermolecular hydrogen bonding pattern, were found and the two terminal rings of the dye displayed greater internal mobility than the rest of the molecule. CONCLUSIONS: The observed multiple ligand-binding modes in the complex between Hoechst 33258 and DNA and differential internal mobility along the bound ligand provide a novel, dynamic picture of the specific inter actions between ligands that bind in the minor groove and DNA. The dynamic state revealed by these studies may account for some of the significant differences previously observed between different crystal structures of Hoechst 33258 complexed with a different DNA duplex, d(CGCGAATTCGCG)2.  相似文献   

17.
An analogue of the DNA-binding compound Hoechst 33258, in which the piperazine ring has been replaced by an imidazoline group, has been cocrystallized with the dodecanucleotide sequence d(CGCGAATTCGCG)2. The structure has been solved by X-ray diffraction analysis and has been refined to an R-factor of 19.7% at a resolution of 2.0 A. The ligand is found to bind in the minor groove, at the central four AATT base pairs of the B-DNA double helix, with the involvement of a number of van der Waals contacts and hydrogen bonds. There are significant differences in minor groove width for the two compounds, along much of the AATT region. In particular this structure shows a narrower groove at the 3' end of the binding site consistent with the narrower cross-section of the imidazole group compared with the piperazine ring of Hoechst 33258 and therefore a smaller perturbation in groove width. The higher binding affinity to DNA shown by this analogue compared with Hoechst 33258 itself, has been rationalised in terms of these differences.  相似文献   

18.
Sarkar R  Pal SK 《Biomacromolecules》2007,8(11):3332-3339
We report structural and dynamical aspects of DNAs from various sources including synthetic oligonucleotides in bulk buffer and as a complex with histone1 (H1). High-resolution transmission electron microscopic (HRTEM) studies reveal the structural change of the DNAs upon complexation with H1 leading to formation of compact-globular and hollow-toroidal particles. In order to explore the functionality of ligand binding of the DNAs and their complexes with H1, we have used two biologically common fluorescent probes Hoechst 33258 (H33258) and Ethidium (EB) as model ligands. Picosecond resolved fluorescence and polarization gated anisotropy studies examined that the minor groove binding of H33258 to the genomic DNA-H1 complex remains almost unaltered. However, the intercalative interaction of EB with the DNA in the complex is severely perturbed compared to that with the DNA in bulk buffer. Time-dependent solvochromic effect of the probe H33258 further elucidates the dynamical solvation, which is reflective of the overall environmental relaxation of the DNAs upon condensation by H1. We have also performed circular dichroism (CD) studies on the DNAs and their complexes with H1, which reveal the change in conformation of the DNAs in the complexes. Our studies in the ligand-binding mechanisms of the DNA-H1 complex are important to understand the mechanism of drug binding to linker DNA in condensed chromatin.  相似文献   

19.
Equilibrium binding experiments using fluorescence and absorption techniques have been performed throughout a wide concentration range (1 nM to 30 microM) of the dye Hoechst 33258 and several DNAs. The most stable complexes found with calf thymus DNA, poly[d(A-T)], d(CCGGAATTCCGG), and d(CGCGAATTCGCG) all have dissociation constants in the range (1-3) X 10(-9) M-1. Such complexes on calf thymus DNA occur with a frequency of about 1 binding site per 100 base pairs, and evidence is presented indicating a spectrum of sequence-dependent affinities with dissociation constants extending into the micromolar range. In addition to these sequence-specific binding sites on the DNA, the continuous-variation method of Job reveals distinct stoichiometries of dye-poly[d(A-T)] complexes corresponding to 1, 2, 3, 4, and 6 dyes per 5 A-T base pairs and even up to 1 and 2 (and possibly more) dyes per backbone phosphate. Models are suggested to account for these stoichiometries. With poly[d(G-C)] the stoichiometries are 1-2 dyes per 5 G-C pairs in addition to 1 and 2 dyes per backbone phosphate. Thermodynamic parameters for formation of the tightest binding complex between Hoechst 33258 and poly[d(A-T)] or d-(CCGGAATTCCGG) are determined. Hoechst 33258 binding to calf thymus DNA, chicken erythrocyte DNA, and poly[d(A-T)] exhibits an ionic strength dependence similar to that expected for a singly-charged positive ion. This ionic strength dependence remains unchanged in the presence of 25% ethanol, which decreases the affinity by 2 orders of magnitude. In addition, due to its strong binding, Hoechst 33258 easily displaces several intercalators from DNA.  相似文献   

20.
The interactions of DAPI with natural DNA and synthetic polymers have been investigated by hydrodynamic, DNase I footprinting, spectroscopic, binding, and kinetic methods. Footprinting results at low ratios (compound to base pair) are similar for DAPI and distamycin. At high ratios, however, GC regions are blocked from enzyme cleavage by DAPI but not by distamycin. Both poly[d(G-C)]2 and poly[d(A-T)]2 induce hypochromism and shifts of the DAPI absorption band to longer wavelengths, but the effects are larger with the GC polymer. NMR shifts of DAPI protons in the presence of excess AT and GC polymers are significantly different, upfield for GC and mixed small shifts for AT. The dissociation rate constants and effects of salt concentration on the rate constants are also quite different for the AT and the GC polymer complexes. The DAPI dissociation rate constant is larger with the GC polymer but is less sensitive to changes in salt concentration than with the AT complex. Binding of DAPI to the GC polymer and to poly[d(A-C)].poly[d(G-T)] exhibits slight negative cooperativity, characteristic of a neighbor-exclusion binding mode. DAPI binding to the AT polymer is unusually strong and exhibits significant positive cooperativity. DAPI has very different effects on the bleomycin-catalyzed cleavage of the AT and GC polymers, a strong inhibition with the AT polymer but enhanced cleavage with the GC polymer. All of these results are consistent with two totally different DNA binding modes for DAPI in regions containing consecutive AT base pairs versus regions containing GC or mixed GC and AT base pair sequences. The binding mode at AT sites has characteristics which are similar to those of the distamycin-AT complex, and all results are consistent with a cooperative, very strong minor groove binding mode. In GC and mixed-sequence regions the results are very similar to those observed with classical intercalators such as ethidium and indicate that DAPI intercalates in DNA sequences which do not contain at least three consecutive AT base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号