首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutagenic effect of dimethylnitrosamine in Salmonella typhimurium TA100, in the presence of a rat-liver homogenate derived from animals treated with Aroclor 1254, was inhibited by substrates and inhibitors of monoamine oxidase. Substrates of diamine oxidase did not inhibit dimethylnitrosamine mutagenesis and, furthermore, monoamine oxidase inhibitors had no effects on mutagenesis by benzo[a]pyrene or aflatoxin B1. The results suggest that monoamine oxidase participates in the activation of dimethylnitrosamine to a mustagen.  相似文献   

2.
Pneumococcal meningitis is a life-threatening disease characterized by acute purulent infection of the meninges causing neuronal injury, cortical necrosis and hippocampal apoptosis. Cholinergic neurons and their projections are extensively distributed throughout the central nervous system. The aim of this study was to assess acetylcholinesterase activity in the rat brain after pneumococcal meningitis. In the hippocampus, frontal cortex and cerebrospinal fluid, acetylcholinesterase activity was found to be increased at 6, 12, 24, 48 and 96 hr without antibiotic treatment, and at 48 and 96 hr with antibiotic treatment. Our data suggest that acetylcholinesterase activity could be related to neuronal damage induced by pneumococcal meningitis.  相似文献   

3.
The influence of protein deprivation and cystein deficiency on the distribution of methyl mercury between 4 subcellular fractions of liver was studied in 2 rat strains (Wistar, strain R and Sprague-Dawley). Kept on a standard diet, the 2 strains showed a similar distribution pattern, with the highest mercury level found in the cytosol, followed by the mitochondrial, microsomal and nuclei fractions. The protein free diet caused on increase in the total amount of bound mercury in both strains, the greatest increase, being found in livers from strain R rats. The cystein deficient diet, on the other hand, gave rise to diverging results. Whereas the level of mercury bound to the subcellular fractions was increased in livers from strain R rats, it was markedly reduced in livers from Sprague-Dawley rats.  相似文献   

4.
1.  The effect of benzodiazepine pretreatment on the stress-induced decrease in MAO activity in rat tissues using footshock as stress model was investigated.
2.  Animals were injected with vehicle, Lorazepam (1.25 mg/kg), or Clonazepam (0.5 mg/kg) 2 hr before or with PK 11195 (0.45 mg/kg) 2.5 hr before being subjected to one session of 10 inescapable footshocks or to a sham session. At the end of the session animals were sacrificed and MAO A and B activities in hearts and brains were determined.
3.  Pretreatment of the animals with both Lorazepam and Clonazepam abolished the decrease induced by footshock in MAO A activity in brain. Pretreatment with Lorazepam but not with Clonazepam abolished the stressinduced decrease in MAO A in the heart. Pretreatment with PK 11195 before Lorazepam reversed its effects in the heart but not in the brain. Neither footshock nor any of the drugs used had any effect on heart and brain MAO B.
4.  Our results suggest that in the heart but not in the brain, peripheral benzodiazepine receptors play a role in the regulation of MAO A activity under stress conditions.
  相似文献   

5.
Putrescine, spermidine and spermine are simple alipathic polycations of ubiquitous occurrence. The pathways of biosynthesis and catabolism, and changes of the concentrations of these compounds in brain under various conditions are discussed.The pharmacological properties of the polyamines have not yet revealed functions which are characteristic only for the CNS, but preliminary evidence suggests structural roles in membranes and a modulatory function in certain neuronal systems.  相似文献   

6.
Aldolase C is selectively expressed in the hippocampus and Purkinje cells in adult mammalian brain. The gene promoter regions governing cell-specific aldolase C expression are obscure. We show that aldolase C messenger expression in the hippocampus is restricted to CA3 neurons. The human distal promoter region (-200/-1200 bp) is essential for beta-galactosidase (beta-gal) expression in CA3 neurons and drives high stripe-like beta-gal expression in Purkinje cells. The 200 bp proximal promoter region is sufficient to drive low brain-specific and stripe-like beta-gal expression in Purkinje cells. Thus, the human aldolase C gene sequences studied drive endogenous-like expression in the brain.  相似文献   

7.
Bery, A. and Martínez, P. 2010. Acetylcholinesterase activity in the developing and regenerating nervous system of the acoel Symsagittifera roscoffensis. —Acta Zoologica (Stockholm) 92 : 383–392. The use of the cholinergic system is widespread in the animal kingdom. It controls different processes, including reproduction and neural transmission. However, its evolutionary history is not yet well understood. For instance, the role played by the cholinergic system in the nervous system of basal bilaterian taxa, where the first signs of architectural complexity appear, is still unknown. Here, we describe the structure of the cholinergic system during the development and regeneration of the acoel flatworm Symsagittifera roscoffensis, using acetylcholinesterase (AchE) activity as a marker. In this species, AchE activity is observed at all developmental stages, including in the early embryos. The juvenile and adult patterns reveal the presence of a complex nervous system that includes three pairs of longitudinal neurite bundles, which are connected to an anterior centralized mass of neurons and neural processes formed by two pairs of connectives and four commissures. The power of the technique also allows the detection of newly born neurons as they are incorporated into the growing nervous system (during regeneration).  相似文献   

8.
峡视核——研究中枢神经系统发育及细胞凋亡的新模型   总被引:1,自引:0,他引:1  
鸟类离中系统的峡视核是近年来研究中枢神经系统发育过程中细胞凋亡的新模型.在其发育过程中,随着核团的形成、折叠及分层,伴有一些与峡视核相关的临时神经通路的形成和消失,与此同时,该核团中神经元有一半以上发生细胞凋亡.研究表明,形成正确的传入和传出联系对神经元的存活十分重要.分子水平上的机制研究揭示,细胞凋亡与一系列神经营养因子及其相应的受体相关.细胞凋亡对中枢神经系统发育过程中正确神经通路的形成有重要意义.  相似文献   

9.
Avermectin B1a, an antihelminthic macrocyclic lactone, has been previously shown to reduce muscle membrane resistance by stimulating γ-aminobutyric acid-mediated chloride conductance. Since the benzodiazepine receptor is coupled to a receptor for γ-aminobutyric acid and related chloride ionophore, the effects of Avermectin B1a on [3H]diazepam binding to the benzodiazepine receptor were studied. In well-washed membrane fragments from rat cerebral cortex, Avermectin B1a markedly increased the binding of [3H]diazepam to benzodiazepine receptors. This effect was qualitatively similar to that observed with either γ-aminobutyric acid or chloride ion and was partially reversed by the γ-aminobutyric acid receptor antagonist, bicuculline. In contrast to the effects of γ-aminobutyric acid and chloride, the enhanced binding of [3H]benzodiazepine elicited by Avermectin B1a was not reversed by extensive washing of the membrane preparation. Avermectin B1a appears to irreversibly modify benzodiazepine receptors at a γ-aminobutyric acid-chloride recognition site and may be valuable in biochemical studies of the regulation of benzodiazepine receptor function.  相似文献   

10.
Lee EB  Leng LZ  Lee VM  Trojanowski JQ 《FEBS letters》2005,579(12):2564-2568
Immunization against the Abeta peptide reverses the pathologic and behavioral manifestations of Alzheimer's disease in murine models. Since active immunization is associated with an autoimmune meningoencephalitis in a subset of humans, passive transfer of anti-Abeta immunoglobulin is being pursued as a potentially safer alternative. We have identified cases of meningoencephalitis subsequent to peripheral and intracerebral passive immunization of Tg2576 mice. The vasocentric mononuclear infiltrate localized only to brain regions affected by Abeta amyloid deposits suggesting that the inflammatory reaction was Abeta specific. This report indicates that current passive immunization in humans should proceed with careful regard for autoimmune complications.  相似文献   

11.
The cytokine interleukin-6 (IL-6) is an important mediator of inflammatory and immune responses in the periphery. IL-6 is produced in the periphery and acts systemically to induce growth and differentiation of cells in the immune and hematopoietic systems and to induce and coordinate the different elements of the acute-phase response. In addition to these peripheral actions, recent studies indicate that IL-6 is also produced within the central nervous system (CNS) and may play an important role in a variety of CNS functions such as cell-to-cell signaling, coordination of neuroimmune responses, protection of neurons from insult, as well as neuronal differentiation, growth, and survival. IL-6 may also contribute to the etiology of neuropathological disorders. Elevated levels of IL-6 in the CNS are found in several neurological disorders including AIDS dementia complex, Alzheimer's disease, multiple sclerosis, systemic lupus erythematosus, CNS trauma, and viral and bacterial meningitis. Moreover, several studies have shown that chronic overexpression of IL-6 in transgenic mice can lead to significant neuroanatomical and neurophysiological changes in the CNS similar to that commonly observed in various neurological diseases. Thus, it appears that IL-6 may play a role in both physiological and pathophysiological processes in the CNS.  相似文献   

12.
The planarian central nervous system (CNS) can be used as a model for studying neural regeneration in higher organisms. Despite its simple structure, recent studies have shown that the planarian CNS can be divided into several molecular and functional domains defined by the expression of different neural genes. Remarkably, a whole animal, including the molecularly complex CNS, can regenerate from a small piece of the planarian body. In this study, a collection of neural markers has been used to characterize at the molecular level how the planarian CNS is rebuilt. Planarian CNS is composed of an anterior brain and a pair of ventral nerve cords that are distinct and overlapping structures in the head region. During regeneration, 12 neural markers have been classified as early, mid-regeneration and late expression genes depending on when they are upregulated in the regenerative blastema. Interestingly, the results from this study show that the comparison of the expression patterns of different neural genes supports the view that at day one of regeneration, the new brain appears within the blastema, whereas the pre-existing ventral nerve cords remain in the old tissues. Three stages in planarian CNS regeneration are suggested.  相似文献   

13.
14.
15.
16.
Multiple signals regulate axon regeneration through the nogo receptor complex   总被引:10,自引:0,他引:10  
Several myelin-derived proteins have been identified as components of central nervous system (CNS) myelin, which prevents axonal regeneration in the adult vertebrate CNS. The discovery of the receptor for these proteins was a major step toward understanding the failure of axon regeneration. The receptor complex consists of at least three elements: the p75 receptor (p75NTR), the Nogo receptor and LINGO-1. Downstream from the receptor complex, RhoA activation has been shown to be a key element of the signaling mechanism of these proteins. Rho activation arrests axon growth, and blocking Rho activation promotes axon regeneration in vivo. Recent studies have identified conventional protein kinase C as an additional necessary component for axon growth inhibition. Possible crosstalk downstream of these signals should be explored to clarify all the inhibitory signals and may provide an efficient molecular target against injuries to the CNS.  相似文献   

17.
Developmental signaling by retinoic acid (RA) is thought to be an innovation essential for the origin of the chordate body plan. The larvacean urochordate Oikopleura dioica maintains a chordate body plan throughout life, and yet its genome appears to lack genes for RA synthesis, degradation, and reception. This suggests the hypothesis that the RA-machinery was lost during larvacean evolution, and predicts that Oikopleura development has become independent of RA-signaling. This prediction raises the problem that the anterior-posterior organization of a chordate body plan can be developed without the classical morphogenetic role of RA. To address this problem, we performed pharmacological treatments and analyses of developmental molecular markers to investigate whether RA acts in anterior-posterior axial patterning in Oikopleura embryos. Results revealed that RA does not cause homeotic posteriorization in Oikopleura as it does in vertebrates and cephalochordates, and showed that a chordate can develop the phylotypic body plan in the absence of the classical morphogenetic role of RA. A comparison of Oikopleura and ascidian evidence suggests that the lack of RA-induced homeotic posteriorization is a shared derived feature of urochordates. We discuss possible relationships of altered roles of RA in urochordate development to genomic events, such as rupture of the Hox-cluster, in the context of a new understanding of chordate phylogeny.  相似文献   

18.
The chordate body plan is characterized by a central notochord, a pharynx perforated by gill pores, and a dorsal central nervous system. Despite progress in recent years, the evolutionary origin of each of theses characters remains controversial. In the case of the nervous system, two contradictory hypotheses exist. In the first, the chordate nervous system is derived directly from a diffuse nerve net; whereas, the second proposes that a centralized nervous system is found in hemichordates and, therefore, predates chordate evolution. Here, we document the ontogeny of the collar cord of the enteropneust Saccoglossus kowalevskii using transmission electron microscopy and 3D‐reconstruction based on completely serially sectioned stages. We demonstrate that the collar cord develops from a middorsal neural plate that is closed in a posterior to anterior direction. Transversely oriented ependymal cells possessing myofilaments mediate this morphogenetic process and surround the remnants of the neural canal in juveniles. A mid‐dorsal glandular complex is present in the collar. The collar cord in juveniles is clearly separated into a dorsal saddle‐like region of somata and a ventral neuropil. We characterize two cell types in the somata region, giant neurons and ependymal cells. Giant neurons connect via a peculiar cell junction that seems to function in intercellular communication. Synaptic junctions containing different vesicle types are present in the neuropil. These findings support the hypotheses that the collar cord constitutes a centralized element of the nervous system and that the morphogenetic process in the ontogeny of the collar cord is homologous to neurulation in chordates. Moreover, we suggest that these similarities are indicative of a close phylogenetic relationship between enteropneusts and chordates. J. Morphol., 2010. ©2010 Wiley‐Liss, Inc.  相似文献   

19.
In the vertebrate central nervous system (CNS), astrocytes are the most abundant and functionally diverse glial cell population. However, the mechanisms underlying their specification and differentiation are still poorly understood. In this study, we have defined spatially and temporally the origin of astrocytes and studied the role of BMPs in astrocyte development in the embryonic chick spinal cord. Using explant cultures, we show that astrocyte precursors started migrating out of the neuroepithelium in the mantle layer from E5, and that the dorsal-most level of the neuroepithelium, from the roof plate to the dl3 level, did not generate GFAP-positive astrocytes. Using a variety of early astrocyte markers together with functional analyses, we show that dorsal-most progenitors displayed a potential for astrocyte production but that dorsally-derived BMP signalling, possibly mediated through BMP receptor 1B, promoted neuronal specification instead. BMP treatment completely prevented astrocyte development from intermediate spinal cord explants at E5, whereas it promoted it at E6. Such an abrupt change in the response of this tissue to BMP signalling could be correlated to the onset of new foci of BMP activity and enhanced expression of BMP receptor 1A, suggesting that BMP signalling could promote astrocyte development in this region.  相似文献   

20.
A soluble, homogeneous ribonucleoprotein (RNP) fragment was extracted from rat brain. The chemical structure and the conformation of this fragment were affected by environmental conditions or by the administration of lysergic acid diethylamidie (LSD). Rats raised for one month in permanent light or darkness showed a difference in RNP conformation; also, the treatment with LSD yielded an RNP conformation different from the control. The RNP fragment has a protein-RNA ratio which differs either with environment or with chemical treatment. The molecular weight of RNP was approx. 31 000 and its thermal hysteresis, circular dichroism and permanent polarization seem influenced by environmental differences. A chemical interaction between LSD and RNP was shown in vitro which might partially explain what is observed on the RNP extracted after treatment with LSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号