首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 为了探讨细胞周期蛋白 E(cyclin E)与人乳腺癌细胞恶性特征间的相关性 ,利用反义 RNA抑制基因表达的技术 ,构建了细胞周期蛋白 E反义 RNA的真核表达载体并转入人乳腺癌细胞中 .通过 G41 8筛选出阳性克隆 ,经 PCR和 Western印迹检测 ,确定细胞中含有重组质粒 ,并且细胞周期蛋白 E蛋白的水平明显降低 ,由此获得了反义 RNA表达载体导致的细胞周期蛋白 E表达受抑制的细胞 .细胞模型建立后 ,观察分析了细胞形态 ,细胞生长的血清依赖性以及软琼脂成集落能力 ,与对照细胞相比所发生的变化 .结果显示 ,细胞周期蛋白 E受抑制后 ,乳腺癌细胞体积变大 ,细胞生长对血清依赖性增加 ,低血清培养到第 6d时 ,细胞密度约为对照细胞的五分之一 ,细胞成集落能力也显著下降 ,软琼脂中克隆形成率下降 57% .这些变化都表明乳腺癌细胞恶性程度由于细胞周期蛋白 E表达受抑制而减弱 ,可以推测 cyclin E与乳腺癌细胞的恶性增殖及非锚定依赖性生长有着明显的关系 .  相似文献   

2.
The activities of the mammalian G1 cyclins, cyclin D and cyclin E, during cell cycle progression (G1/S) are believed to be regulated by cell attachment and the presence of growth factors. In order to study the importance of cell attachment and concomitant integrin signaling on the expression of G1 cyclins during the natural adhesion process from mitosis to interphase, protein expression was monitored in cells that were synchronized by mitotic shake off. Here we show that in Chinese hamster ovary (CHO) and neuroblastoma (N2A) cells, expression of cyclin E at the M/G1 transition is regulated by both growth factors and cell attachment, while expression of cyclin D seems to be entirely dependent on the presence of serum. Expression of cyclin E appears to be correlated with the phosphorylation of the retinoblastoma protein, suggesting a link with the activity of the cyclin D/cdk4 complex. Expression of the cdk inhibitors p21cip1/Waf1 and p27Kip1 is not changed upon serum depletion or detachment of cells during early G1, suggesting no direct role for these CKIs in the regulation of cyclin activity. Although inhibition of cyclin E/cdk2 kinase activity has been reported previously, this is the first time that cyclin E expression is shown to be dependent on cell attachment.  相似文献   

3.
哺乳动物细胞表达系统是生产重组蛋白药物最常用的表达系统。但在无蛋白培养基中,哺乳动物细胞生长活力差,且容易发生细胞凋亡,因而难以大规模培养。为解决此问题,应用双顺反子表达载体在CHO-dhfr^-细胞中同时表达Igf-1/Bcl-2或Bcl-2/CyclinE基因组合,通过Bcl-2使细胞获得抗凋亡能力;通过1gf-1或CyclinE促进细胞生长分裂,使细胞获得在无蛋白培养基中生长的能力。以上述基因组合转染CHO-dhfr^-细胞,应用Western blot从G418抗性克隆中分别筛选到Bcl-2高表达克隆若干个,对其中表达Bcl-2最高的CHO-IB3和CHO-Bcl做进一步Western blot和流式细胞分析,确认此两个细胞株分别高表达Igf-1/Bcl-2和Bcl-2/CyclinE基因组合。分别通过撤去血清和加入放线菌素D诱导细胞凋亡,并以流式细胞术和DNA Ladder法检测细胞凋亡,证明CHO-IB3和CHO一BCl均具有较强的抗细胞凋亡能力。MTT法证明两个细胞株在不含血清的IMDM培养基中的增殖活力显著高于CHO-dhfr^-对照细胞。在细胞培养瓶中的连续培养实验表明,CHO-IB3和CHO-BCl在本实验室设计的IMEM无蛋白培养基中的生长速度和活细胞数显著高于CHO-dhfr^-对照细胞。提示此两个细胞系能够在无血清培养基中抗凋亡高活力生长,适于作为生物工程宿主细胞。  相似文献   

4.
5.
To investigate E7-dependent biochemical changes which are involved in cellular transformation, we analyzed the influence of human papillomavirus type 16 (HPV-16) E7 on the expression of cell cycle regulatory proteins. Expression of E7 in established rodent fibroblasts (NIH 3T3), which was shown to be sufficient for transformation of these cells, leads to constitutive expression of the cyclin E and cyclin A genes in the absence of external growth factors. Surprisingly, expression of the cyclin D1 gene, which encodes a major regulator of G1 progression, is unaltered in E7-transformed cells. In transient transfection experiments, the cyclin A gene promoter is activated by E7 via an E2F binding site. In 14/2 cells, which were used as a model system to analyze the role of HPV-16 E7 in the transformation of primary cells, we observed rapid E7-dependent activation of cyclin E gene expression, which can be uncoupled from activation of the cyclin A gene, since the latter requires additional protein synthesis. E7-driven induction of cyclin E and cyclin A gene expression was accompanied by an increase in the associated kinase activities. Two domains of the E7 oncoprotein, which are designated cd1 and cd2, are essential for transformation of rodent fibroblasts. It is shown here that growth factor-independent expression of the cyclin E gene requires cd2 but not cd1, while activation of cyclin A gene expression requires cd1 function in addition to that of cd2. These data suggest that cyclin A gene expression is controlled by two distinct negative signals, one of which also restricts expression of the cyclin E gene. The ability of E7 to separately override each of these inhibitory signals, via cd1 and cd2, cosegregates with its ability to fully transform rodent fibroblasts. Unlike serum growth factors, E7 induces S-phase entry without activating cyclin D1 gene expression, in keeping with the finding that cyclin D1 function is not required in cells transformed by DNA tumor viruses.  相似文献   

6.
7.
8.
Recent advances in defining the molecular mechanisms of cell cycle control in eukaryotes provide a basis for beter understanding the hormonal control of cell proliferation in normal and neoplastic breast epithelium. It is now clear that a number of critical steps in cell cycle progression are controlled by families of serine/threonine kinases, the cdks. These kinases are activated by interactions with various cyclin gene products which form the regulatory subunits of the kinase complexes. Several families of cyclins control cell cycle progression in G1 phase, cyclins C, D and E, or in S, G2 and mitosis, cyclins A and B. Recent studies have defined the expression and regulation of cyclin genes in normal breast epithelial cells and in breast cancer cell lines. Following growth arrest of T-47D breast cancer cells by serum deprivation restimulation with insulin results in sequential induction of cyclin genes. Cyclin D1 mRNA increases within 1 h of mitogenic stimulation and is followed by increased expression of cyclins D3 and E in G1 phase, cyclin A in late G1/early S phase and cyclin B1 in G2. Similar results were observed following epidermal growth factor stimulation of normal breast epithelial cells. Other hormones—oestrogens and progestins—and growth factors—insulin-like investigated for their effects on G1 cyclin gene expression. In all cases there was an excellent correlation between the induction of cyclin D1 mRNA and subsequent entry into S phase. Furthermore, growth inhibition by antioestrogens and concurrent G1 arrest were preceded by an acute decrease in cyclin D1 gene expression. These observations suggest a likely role for cyclin D1 in mediating many of the known hormonal effects on cell proliferation in breast epithelial cells.  相似文献   

9.
Stimulation of the breast cancer-derived MCF-7S cell line with insulin-like growth factor I (IGF-I; 20 ng/ml) leads to enhanced expression of cyclin D1, hyperphosphorylation of pRb, DNA synthesis, and cell division. 17beta-Estradiol (E(2); 10(-9) m) is not able to stimulate proliferation of MCF-7S cells, although addition of E(2) to serum-starved cells does result in induction of cyclin D1. However, in combination with submitogenic amounts of IGF-I (2 ng/ml), E(2) induces cell proliferation. We have previously shown that the synergistic action of E(2) and IGF-I emanates from the ability of both hormones to induce cyclin D1 expression and that IGF-I action is required to induce activity of the cyclin D1-CDK4 complex, which triggers cell cycle progression. Here, we show that IGF-I (but not E(2)) is able to induce nuclear accumulation of cyclin D1 by a phosphatidylinositol 3-kinase-dependent mechanism. Nuclear accumulation of cyclin D1 and cell cycle progression were also observed when LiCl, a known inhibitor of GSK3beta, was added to E(2)-stimulated cells. Thus, inhibition of GSK3beta activity appears to trigger nuclear accumulation of cyclin D1 and cell cycle progression. This notion was confirmed by overexpression of constitutively active GSK3beta, which blocks IGF-I-induced nuclear accumulation of cyclin D1 as well as S phase transition.  相似文献   

10.
Elucidating the factors that inhibit the increase in airway smooth muscle (ASM) mass may be of therapeutic benefit in asthma. Here, we investigated whether interferon-gamma (IFN-gamma), a potent inducer of growth arrest in various cell types, regulates mitogen-induced ASM cell proliferation. IFN-gamma (1-100 U/ml) was found to markedly decrease both DNA synthesis and ASM cell number induced by the mitogens epidermal growth factor (EGF) and thrombin. Interestingly, IFN-gamma had no effect on mitogen-induced activation of three major mitogenic signaling pathways, phosphatidylinositol 3-kinase, p70(S6k), or mitogen-activated protein kinases. Mitogen-induced expression of cell cycle regulator cyclin D1 was increased by IFN-gamma, whereas no effect was observed on degradation of p27(Kip1). Expression array analysis of 23 cell cycle-related genes showed that IFN-gamma inhibited EGF-induced increases in E2F-1 expression, whereas induction of c-myc, cyclin D2, Egr-1, and mdm2 were unaffected. Induction of E2F-1 protein and Rb hyperphosphorylation after mitogen stimulation was also suppressed by IFN-gamma. In addition, IFN-gamma decreased activation of cdk2 and expression of cyclin E, upstream signaling molecules responsible for Rb hyperphosphorylation in the late G1 phase. IFN-gamma also increased levels of IFI 16 protein, whose mouse homolog p202 has been associated with growth inhibition. Together, our data indicate that IFN-gamma is an effective inhibitor of ASM cell proliferation by blocking transition from G1-to-S phase by acting at two different levels: modulation of cdk2/cyclin E activation and inhibition of E2F-1 gene expression.  相似文献   

11.
Several growth factors play an important role in liver regeneration. Once hepatic injury occurs, liver regeneration is stimulated by hepatocyte growth factor (HGF), transforming growth factor (TGF)-alpha, and heparin-binding epidermal growth factor-like growth factor (HB-EGF), whereas TGF-beta1 terminates liver regeneration. In this study, we analyzed the effect of a combination of HGF and epidermal growth factor (EGF) on mitogen-activated protein kinase (MAPK) activity and G1 cyclin expression in primary cultured rat hepatocytes. Treatment with a combination of HGF and EGF, in comparison with that of either HGF or EGF, induced tyrosine phosphorylation of both c-Met and EGF receptor (EGFR) independently and additively stimulated MAPK activity and cyclin D1 expression, resulting in additive stimulation of DNA synthesis. On the other hand, although TGF-beta1 treatment did not affect tyrosine phosphorylation of c-Met and EGFR, MAPK activity, and cyclin D1 expression, which were stimulated by HGF and EGF, DNA synthesis was completely inhibited through a marked decrease in cyclin E expression. These results indicate that potent mitogens, such as HGF, TGF-alpha, and HB-EGF, could induce the additive enhancement of liver regeneration cooperatively through an increase in Ras/MAPK activity followed by cyclin D1 expression, and that TGF-beta1 suppresses the growth factor-induced signals between cyclin D1 and cyclin E, resulting in the inhibition of DNA synthesis.  相似文献   

12.
13.
14.
15.
The c-Raf-1 kinase is activated by different mitogenic stimuli and has been shown to be an important mediator of growth factor responses. Fusion of the catalytic domain of the c-Raf-1 kinase with the hormone binding domain of the estrogen receptor (deltaRaf-ER) provides a hormone-regulated form of oncogenic activated c-Raf-1. We have established NIH 3T3 cells stably expressing a c-Raf-1 deletion mutant-estrogen receptor fusion protein (c-Raf-1-BxB-ER) (N-BxB-ER cells). The transformed morphology of these cells is dependent on the presence of the estrogen antagonist 4-hydroxytamoxifen. Addition of 4-hydroxytamoxifen to N-BxB-ER cells arrested by density or serum starvation causes reentry of these cells into cell proliferation. Increases in the cell number are obvious by 24 h after activation of the oncogenic c-Raf-1 protein in confluent cells. The onset of proliferation in serum-starved cells is further delayed and takes about 48 h. In both cases, the proliferative response of the oncogenic c-Raf-1-induced cell proliferation is weaker than the one mediated by serum and does not lead to exponential growth. This is reflected in a markedly lower expression of the late-S- and G2/M-phase-specific cyclin B protein and a slightly lower expression of the cyclin A protein being induced at the G1/S transition. Oncogenic activation of c-Raf-1 induces the expression of the heparin binding epidermal growth factor. The Jnk1 kinase is putatively activated by the action of the autocrine growth factor. The kinetics of Jnk1 kinase activity is delayed and occurs by a time when we also detect DNA synthesis and the expression of the S-phase-specific cyclin A protein. This finding indicates that oncogenic activation of the c-Raf-1 protein can trigger the entry into the cell cycle without the action of the autocrine growth factor loop. The activation of the c-Raf-1-BxB-ER protein leads to an accumulation of high levels of cyclin D1 protein and a repression of the p27Kip1 cyclin-dependent kinase inhibitor under all culture conditions tested.  相似文献   

16.
BRD7是采用cDNA代表性差异分析法克隆的一个新的Bromodomain基因,过表达BRD7可抑制鼻咽癌细胞的生长和细胞周期进程,同时发现BRD7基因可以调控Rb/E2F通路的活性.该研究旨在进一步探讨BRD7调控Rb/E2F通路的分子机制.通过蛋白质印迹和RT-PCR实验方法发现,BRD7能够降低Rb的磷酸化水平,抑制cyclinD1、cyclinE的蛋白质表达,上调CDK4抑制子P19的mRNA表达,但对CDK4和CDK2的蛋白质表达没有明显影响;通过荧光素酶实验从转录调控水平进一步证实了BRD7能够明显抑制cyclinD1启动子活性;采用反义核酸技术抑制COS7细胞内源性BRD7的表达后,发现cyclinD1、cyclinE、磷酸化Rb的蛋白质表达水平上调,并且可以促进细胞生长.这些结果表明:BRD7参与调控Rb/E2F信号通路中重要靶分子的表达,抑制Rb/E2F通路的活性,从而阻止细胞周期G1-S期进程,抑制鼻咽癌细胞生长.  相似文献   

17.
18.
Expression of cyclins and cdks throughout murine carcinogenesis.   总被引:6,自引:0,他引:6  
The overexpression and/or amplification of cell cycle regulating genes is an important factor in the progression of cancer. Recent attention has been focused on several cyclin and cdks genes whose expression were increased in many types of tumor. In this study, we investigated the expression kinetics of cyclins A, B, D1, E and cdks 1, 2, 4, 6 by RT-PCR coupled with densitometry and correlated to the growth fraction (percentage of S cells). This analysis was performed using an experimental murine leukemic model, generated by in vivo administration of murine clonogenic cells Wehi-3b injected into balb-c mice. Differential expression of cyclins and cdks was observed between normal and tumoral cells with different patterns of expression between G1 and G2M cyclins-cdks. G1 cyclins cdks expression was significantly increased in tumor cells when compared to normal cells. In the same manner, G2M cyclins cdks expression was only observed in tumor cells at a lower level than for G1 cyclins cdks, but not detected in normal cells. These differences correlated with the growth fraction for both the G1 cyclins cdks (r = 0.91, 0.94, 0.85, 0.90 and 0.96 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) and the G2M cyclins cdks (r = 0.96, 0.97 and 0.93 for cyclins A, B and cdkl respectively). Analysis of cyclins cdks expression kinetics during tumoral progression shows that cyclins A, B and cdkl were expressed from the 12th day on of disease, increased until the death of the animals and correlated with the growth fraction (r = 0.94, 0.95 and 0.97 for cyclins A, B and cdk1 respectively) (n = 20). Overexpression of other cyclins cdks were observed, from the 6th day on for cyclin D1, the 12th day for cdk2 and cdk4, the 15th day for cdk6 and the 20th day for cyclin E. These increases persisted during tumoral progression and correlated with the growth fraction (r = 0.85, 0.94, 0.93, 0.96, and 0.98 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) (n = 20). Our results demonstrated that G1 and G2-M cyclins cdks mRNA levels were increased at approximately the same time of maximal tumor growth. Only cyclin D1 overexpression occured at the initiation of tumoral development, and could therefore be considered as an early marker of cell proliferation.  相似文献   

19.
Secreted modular calcium-binding protein-2 (SMOC-2) is a recently-identified SPARC-related protein of unknown function. In mRNA profiling experiments we, found that SMOC-2 expression was elevated in quiescent (G0) mouse fibroblasts and repressed after mitogenic stimulation with serum. The G0-specific expression of SMOC-2 was similar to that of platelet-derived growth factor-beta receptor (PDGFbetaR), a major mitogenic receptor. Therefore, we tested a possible role for SMOC-2 in growth factor-induced cell cycle progression. SMOC-2 overexpression augmented DNA synthesis induced by serum and fibroblast mitogens (including PDGF-BB and basic fibroblast growth factor). Conversely, SMOC-2 ablation by using small interfering RNA attenuated DNA synthesis in response to PDGF-BB and other growth factors. Mitogen-induced expression of cyclin D1 was attenuated in SMOC-2-ablated cells, and cyclin D1-overexpressing cells were resistant to inhibition of mitogenesis after SMOC-2 ablation. Therefore, cyclin D1 is limiting for G1 progression in SMOC-2-deficient cells. SMOC-2 ablation did not inhibit PDGF-induced PDGFbetaR autophosphorylation or PDGF-BB-dependent activation of mitogen-activated protein kinase and Akt kinases, suggesting that SMOC-2 is dispensable for growth factor receptor activation. However, integrin-linked kinase (ILK) activity was reduced in SMOC-2-ablated cells. Ectopic expression of hyperactive ILK corrected the defective mitogenic response of SMOC-2-deficient cells. Therefore, SMOC-2 contributes to cell cycle progression by maintaining ILK activity during G1. These results identify a novel role for SMOC-2 in cell cycle control.  相似文献   

20.
Gap junctional intercellular communication (GJIC) and connexin expression are frequently decreased in neoplasia and may contribute to defective growth control and loss of differentiated functions. GJIC, in E9 mouse lung carcinoma cells and WB-aB1 neoplastic rat liver epithelial cells, was elevated by forced expression of the gap junction proteins, connexin43 (Cx43) and connexin32 (Cx32), respectively. Transfection of Cx43 into E9 cells increased fluorescent dye-coupling in the transfected clones, E9-2 and E9-3, to levels comparable to the nontransformed sibling cell line, E10, from which E9 cells originated. Transduction of Cx32 into WB-aB1 cells also increased dye-coupling in the clone, WB-a/32-10, to a level that was comparable to the nontransformed sibling cell line, WB-F344. The cell cycle distribution was also affected as a result of forced connexin expression. The percentage of cells in G(1)-phase increased and the percentage in S-phase decreased in E9-2 and WB-a/32-10 cells as compared to E9 and WB-aB1 cells. Concomitantly, these cells exhibited changes in G(1)-phase cell cycle regulators. E9-2 and WB-a/32-10 cells expressed significantly less cyclin D1 and more p27(kip-1) protein than E9 and WB-aB1 cells. Other growth-related properties (expression of platelet-derived growth factor receptor-beta, epidermal growth factor receptor, protein kinase C-alpha, protein kinase A regulatory subunit-Ialpha, and production of nitric oxide in response to a cocktail of pro-inflammatory cytokines) were minimally altered or unaffected. Thus, enhancement of connexin expression and GJIC in neoplastic mouse lung and rat liver epithelial cells restored G(1) growth control. This was associated with decreased expression of cyclin D1 and increased expression of p27(kip-1), but not with changes in other growth-related functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号