首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orexin A is produced in caudal lateral, posterior, perifornical, and dorsomedial hypothalamic areas. Orexin A in the rostro-dorsal lateral hypothalamic area (rLHa) stimulates feeding and activates several feeding-regulatory brain areas. We hypothesized that aging diminishes feeding and c-Fos-immunoreactivity (c-Fos-ir; marker of neuronal activation) response to orexin A. Young (3 mo), middle-aged (12 mo), and old (24 mo) male Fischer 344 rLHa-cannulated rats were injected with orexin A (0.5, 1, and 2 nmol). Food intake was measured at 1, 2, and 4 h. c-Fos-ir in hypothalamic, limbic, and hindbrain regions was measured in two additional sets of rLHa-orexin A injected rats. In a separate study, orexin A effects on feeding and c-Fos-ir were measured in 6-mo-old rats. Orexin A significantly elevated feeding in rats aged 3, 6, and 12 mo in the 0-1 and 1-2- h time intervals, whereas in old rats this was significant in the 1-2 h time interval only. At 1 h, 6-8 (of 14) brain areas showed elevated c-Fos-ir in response to orexin A in 3- and 6-mo-old rats, but 24-mo-old rats exhibited attenuated or absent c-Fos-ir response in all brain regions except the hypothalamic paraventricular nucleus (PVN) and rostral nucleus of the solitary tract (rNTS). Orexin A did not elevate c-Fos-ir in 3-mo-old rats at 2 h after injection, whereas the PVN and mediodorsal thalamic nucleus (MD) showed elevated c-Fos-ir at 2 h in 24-mo-old rats. These data suggest that delayed and diminished feeding responses in old animals may be due to ineffective neural signaling and implicate the orexin A network as one feeding system affected by aging.  相似文献   

2.
Chronic intracerebroventricular (ICV) treatment with nociceptin/orphanin FQ (NC), the endogenous ligand for the opioid receptor-like 1 (ORL1) receptor, reduces ethanol intake in alcohol-preferring rats and abolishes the rewarding properties of ethanol in the place conditioning paradigm. To pharmacologically characterize the receptor involved, the present study evaluated the effect on ethanol drinking in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats of ICV injections for 8 days of NC or of the NC analogs NC(1-17)NH(2), NC(1-13)NH(2), NC(1-12)NH(2) and [Nphe(1)]NC(1-13)NH(2). In vitro studies indicate that NC, NC(1-17)NH(2), NC(1-13)NH(2) and NC(1-12)NH(2) are agonists, while [Nphe(1)]NC(1-13)NH(2) is a selective antagonist at the ORL1 receptor. Freely feeding and drinking rats were offered 10% ethanol 30 min/day at the beginning of the dark phase of the light cycle. NC significantly attenuated ethanol intake at 500 or 1000 ng/rat (210 or 420 pmol/rat). NC(1-17)NH(2), markedly reduced ethanol intake, but its effect was statistically significant at 1000 (420 pmol/rat), not at 500 ng/rat (210 pmol/rat). After the end of treatment ethanol drinking promptly came back to baseline level. Ethanol consumption was also reduced by NC(1-13)NH(2); however, its effect was less potent and pronounced. NC(1-12)NH(2) did not modify ethanol intake at doses up to 4000 ng/rat (2339 pmol/rat). Water and food consumption were not modified. Treatment with [Nphe(1)]NC(1-13)NH(2), 66 or 99 microg/rat, did not modify ethanol intake; however, [Nphe(1)]NC(1-13)NH(2), 66 microg/rat, given just before 1000 ng/rat of NC(1-17)NH(2), abolished the effect of the agonist. The present results show that the 13 amino acid N-terminal sequence of NC is essential for the effect on ethanol intake and indicate that [Nphe(1)]NC(1-13)NH(2) acts as an antagonist to block the effect of NC. These findings provide further evidence that selective agonists at the ORL-1 receptor attenuate ethanol intake in alcohol-preferring rats and suggest that the NC/ORL1 system may represent an interesting target for treatment of alcohol abuse.  相似文献   

3.
Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor tyrosine kinase B (TrkB) are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF in the hypothalamic paraventricular nucleus (PVN) on feeding. BDNF injected unilaterally or bilaterally into the PVN of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and 24- to 48-h postinjection intervals. Effective doses producing inhibition of feeding behavior did not establish a conditioned taste aversion. PVN BDNF significantly decreased PVN neuropeptide Y (NPY)-induced feeding at 1, 2, and 4 h following injection. BDNF administration in the PVN abolished food-restriction-induced NPY gene expression in the hypothalamic arcuate nucleus. In conclusion, BDNF in the PVN significantly decreases food intake and body weight gain, suggesting that the PVN is an important site of action for BDNF in its effects on energy metabolism. Furthermore, BDNF appears to interact with NPY in its anorectic actions, although a direct effect on NPY remains to be established.  相似文献   

4.
Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand for the NOP opioid receptor, stimulates feeding in rats. The present study evaluated the effect of three newly synthesized NOP receptor agonists and two NOP receptor antagonist on food intake. Freely feeding rats were tested with intracerebroventricular (ICV) injections of the NOP receptor agonists OS-500, OS-462 and OS-461. OS-500 and OS-462 evoked a hyperphagic effect more potent and far more pronounced than that of N/OFQ, while OS-461 was ineffective. OS-500 and OS-462 were also tested by intraperitoneal injection, but were unable to evoke hyperphagia following this route of administration. The NOP receptor antagonist NC-797 and UFP-101 did not modify feeding in freely feeding rats while fully antagonized the hyperphagic effect of N/OFQ. Pre-treatment with UFP-101 but not with NC-797 antagonized the hyperphagic effect of OS-462 and OS-500. The present findings indicate that OS-500, OS-462 may act as potent and long-lasting NOP receptor agonists, whereas UFP-101 and NC-797 show antagonistic properties. The higher efficacy of UFP-101 in blocking the hyperphagic effect of OS-462 and OS-500 may be linked to the better pharmacokinetic profile of this antagonist compared to NC-797. Overall, the results indicate that these compounds may represent valuable pharmacological tools to investigate the role of the brain N/OFQ system.  相似文献   

5.
Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor TrkB, are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF, given into the ventromedial nucleus of the hypothalamus (VMH), on normal and deprivation- and neuropeptide Y (NPY)-induced feeding behavior and body weight. BDNF injected unilaterally or bilaterally into the VMH of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and the 24- to 48-h postinjection intervals. Doses effectively producing inhibition of feeding behavior did not establish a conditioned taste aversion. BDNF-induced feeding inhibition was attenuated by pretreatment of the TrkB-Fc fusion protein that blocks binding between BDNF and its receptor TrkB. VMH-injected BDNF significantly decreased VMH NPY-induced feeding at 1, 2, and 4 h after injection. In summary, BDNF in the VMH significantly decreases food intake and body weight gain, by TrkB receptor-mediated actions. Furthermore, the anorectic effects of BDNF in this site appear to be mediated by NPY. These data suggest that the VMH is an important site of action for BDNF in its effects on energy metabolism.  相似文献   

6.
Many gastrointestinal meal-related signals are transmitted to the central nervous system via the vagus nerve and thereby control changes in meal size. The c-Fos-positive neuron has been used as a marker of neuronal activation after lipid meals to examine the contribution of a selective macronutrient on brain neurocircuit activity. In rats fed Intralipid, the c-Fos-positive neurons were highly stimulated in the nucleus of the solitary tract (NTS) and in the hypothalamus, including the paraventricular nucleus (PVN), arcuate nucleus of the hypothalamus (ARC), and ventromedial hypothalamus at 4 h lipid feeding. However, c-Fos-like immunoreactivity was markedly attenuated in these brain regions when chylomicron formation/secretion was blocked by Pluronic L-81. After lymph was diverted from the lymph cannulated animals, the rats had a lower number of c-Fos-positive cells in the NTS and ARC. In contrast, the rats had higher c-Fos-positive neurons in PVN. The present study also revealed that c-Fos-positive neurons induced by feeding of Intalipid were abolished by CCK type 1 receptor antagonist, Lorglumide. We conclude that the formation and/or secretion of chylomicron are critical steps for initiating neuronal activation in the brain.  相似文献   

7.
The objective of this study is to determine the effect of lead (pb) on antioxidant enzymes and lipid peroxidation products in different regions of rat brain. Wistar male rats were treated with lead acetate (500 ppm) through drinking water for a period of 8 weeks. Control animals were maintained on sodium acetate. Treated and control rats were sacrificed at intervals of 1st, 4th and 8th week and the whole brains were dissected on ice into four regions namely the cerebellum, the hippocampus, the frontal cortex and the brain stem. Antioxidant enzymes namely catalase and superoxide dismutase in all the four regions of brain were determined. In addition, lipid peroxidation products were also estimated. The results indicated a gradual increase in the activity of antioxidant enzymes in different regions of the brain and this response was time-dependent. However, the increase was more in the cerebellum and the hippocampus compared to other regions of the brain. The lipid peroxidation products also showed a similar trend suggesting increased effect of lead in these two regions of the brain. The data indicated a region-specific oxidative stress in the brain exposed to lead.  相似文献   

8.
M C Carrillo  K Kitani  S Kanai  Y Sato  G O Ivy 《Life sciences》1992,50(25):1985-1992
In a previous study we have shown that chronic administration of (-)deprenyl increases activities of superoxide dismutase (SOD) and catalase (CAT) in rat striatum (1). The present study attempted to clarify how specific the effect of deprenyl is to certain tissues and brain regions in the rat. Two mg/kg/day of deprenyl was continuously infused s.c. in young male Fischer-344 rats. On the 22nd day, rats were sacrificed and enzyme activities of SOD and CAT were determined in several different brain regions and the liver. Activities of both SOD and CAT were significantly increased in striatum and substantia nigra but not in hippocampus, cerebellum or liver. Both types of SOD (i.e. Cu Zn-SOD and Mn-SOD) were significantly increased in striatum, substantia nigra. Interestingly, in cerebral cortices of three different regions, activities also tended to increase (especially those of Mn-SOD), although the increase was not so striking as in substantia nigra and striatum. The results confirm the previous observation that (-)deprenyl can increase free radical scavenger enzyme activities in striatum and provide further evidence that this effect is selective to certain brain regions and tissue types.  相似文献   

9.
目的:探讨替米沙坦及吡哆胺对自发性高血压大鼠脑组织氧化应激的影响。方法:自发性高血压大鼠24只随机分为4组(n=6):高血压对照组(HC组);替米沙坦组(T组);吡哆胺组(P组);联合治疗组(TP组)。同龄WKY大鼠作为正常对照组(NC组)。药物干预16周,测定各组脑组织中丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性及烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶p47phox mRNA表达。结果:与NC组比较,HC组脑组织中MDA含量明显升高、SOD活性明显减低(P<0.05);与HC组比较T组、P组、TP组MDA含量明显减低,SOD活性明显升高(P<0.05);与NC组比较HC组(NADPH)氧化酶p47phox mRNA表达显著上调(P<0.01);与HC组比较T组、TP组NADPH氧化酶p47phox mRNA表达明显下调(P<0.01);HC组与P组比较NADPH氧化酶p47phox mRNA表达无统计学差异(P>0.05)。结论:自发性高血压大鼠脑组织处于氧化应激状态,替米沙坦及吡哆胺可抑制自发性高血压大鼠脑组织的氧化应激水平,联合治疗并不优于替米沙坦单药治疗。  相似文献   

10.
C W Mandl  C Kunz    F X Heinz 《Journal of virology》1991,65(8):4070-4077
A poly(A) tail was identified on the 3' end of the prototype tick-borne encephalitis (TBE) virus strain Neudoerfl. This is in contrast to the general lack of poly(A) in the genomic RNAs of mosquito-borne flaviviruses analyzed so far. Analysis of several closely related strains of TBE virus, however, revealed the existence of two different types of 3' noncoding (NC) regions. One type (represented by strain Neudoerfl) is only 114 nucleotides long and carries a 3'-terminal poly(A) structure. This was also found in several TBE virus strains isolated from different geographic regions over a period of almost 30 years. The other type (represented by strain Hypr) is 461 nucleotides long and not polyadenylated. The sequence homology between the two types of TBE virus 3' NC regions terminates at a specific position 81 nucleotides after the stop codon. The second type of 3' NC region more closely resembles the common flavivirus pattern, including the potential for the formation of a 3'-terminal hairpin structure. However, it lacks primary sequence elements that are conserved among other flavivirus genomes.  相似文献   

11.
Selenium is present in various biologically important selenoproteins. The preferential incorporation of selenium into the brain indicates its significance for this organ, but so far knowledge concerning the cerebral selenoproteome is scarce. We therefore investigated the expression of selenoproteins in various regions of the rat brain, various subcellular fractions and several brain cell lines by (75)Se-labelling, gel electrophoretic separation and autoradiography, with the (75)Se tracer as the selenoprotein marker. Quantitative evaluation of the labelled proteins in selenium-deficient rats revealed information regarding preferentially supplied selenoproteins and their distribution; 21 selenoproteins could be distinguished, among them a novel or modified 15-kDa selenoprotein enriched in the cerebellum cytosol. The selenoproteins differed in the degree of their expression among the brain regions and within a region among the subcellular fractions. Some cell-type-specific selenium-containing proteins were found in the cell lines. Differences in the distribution patterns between mono-cultured and co-cultured endothelial cells and astrocytes showed that mediators produced by other cells could affect the selenoprotein expression of a specific cell-type. This effect might play a role in the uptake and distribution of selenium in the brain but could also be of significance in the selenium metabolism of other tissues.  相似文献   

12.
We have tested our hypothesis that alterations in the levels of TRH receptors, and the synthesis and release of tripeptide TRH, and other neurotropic TRH-like peptides mediate some of the mood stabilizing effects of valproate (Valp). We have directly compared the effect of 1 week of feeding two major mood stabilizers, Valp and lithium chloride (LiCl) on TRH binding in limbic and extra-limbic regions of male WKY rats. Valp increased TRH receptor levels in nucleus accumbens and frontal cortex. Li increased TRH receptor binding in amygdala, posterior cortex and cerebellum. The acute, chronic and withdrawal effects of Valp on brain levels of TRH (pGlu-His-Pro-NH2, His-TRH) and five other TRH-like peptides, Glu-TRH, Val-TRH, Tyr-TRH, Leu-TRH and Phe-TRH were measured by combined HPLC and RIA. Acute treatment increased TRH and TRH-like peptide levels within most brain regions, most strikingly in pyriform cortex. The fold increases (in parentheses) were: Val-TRH (58), Phe-TRH (54), Tyr-TRH (25), TRH (9), Glu-TRH (4) and Leu-TRH (3). We conclude that the mood stabilizing effects of Valp may be due, at least in part, to its ability to alter TRH and TRH-like peptide, and TRH receptor levels in the limbic system and other brain regions implicated in mood regulation and behavior.  相似文献   

13.
Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2) for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2). Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D(1) (D1R) levels were reduced and dopamine receptor D(2) (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.  相似文献   

14.
Li  Ying J.  Low  Walter C. 《Neurochemical research》1997,22(5):589-595
Fetal septal neurons transplanted into the deafferented retrosplenial cortex (RSC) of rats have been shown to reinnervate the host brain and ameliorate spatial memory deficits. In the present study we examined the effects of implanting cholinergic neurons on high affinity choline uptake (HACU) in the denervated RSC and the correlational relationship between this cholinergic parameter and the level of behavioral recovery. Three groups of animals were used: 1) normal control rats (NC), 2) rats with lesions of the fornix and cingulate pathways (FX), and 3) lesioned rats with fetal septal grafts in the RSC (RSCsep-TPL). We found that intra-RSC septal grafts produced significant increases in HACU, and that recovery of HACU was significantly correlated with the improvements in the performance of spatial reference memory, spatial navigation, and spatial working memory tasks. We have also investigated the ability of the host brain to modulate the activity of the implanted neurons. In particular we evaluated the effect of the animals' performance in a 6-arm radial maze task on high affinity choline uptake (HACU). Animals in each of the NC, FX, and RSCsep-TPL groups were randomly assigned one of the following subgroups: 1) rats that performed the maze task before the determination of HACU (BEH), or 2) rats that did not perform the maze task before the determination of HACU (NON-BEH). Significant increases were observed in the NC and RSCsep-TPL groups, but not in the FX animals, indicating that fetal septal grafts in the RSC can become functionally incorporated with the host neural circuitry, and that the activity of the implanted cholinergic neurons can be modulated by the host brain.  相似文献   

15.
We studied the long-term effects of streptozotocin-induced diabetes on tissue-specific cytochrome P450 (CYP) and glutathione-dependent (GSH-dependent) xenobiotic metabolism in rats. In addition, we also studied the effect of antidiabetic Momordica charantia (karela) fruit-extract feeding on the modulation of xenobiotic metabolism and oxidative stress in rats with diabetes. Our results have indicated an increase (35-50%) in CYP4A-dependent lauric acid hydroxylation in liver, kidney, and brain of diabetic rats. About a two-fold increase in CYP2E-dependent hepatic aniline hydroxylation and a 90-100% increase in CYP1A-dependent ethoxycoumarin-O-deethylase activities in kidney and brain were also observed. A significant increase (80%) in aminopyrene N-demethylase activity was observed only in rat kidney, and a decrease was observed in the liver and brain of diabetic rats. A significant increase (77%) in NADPH-dependent lipid peroxidation (LPO) in kidney of diabetic rats was also observed. On the other hand, a decrease in hepatic LPO was seen during chronic diabetes. During diabetes an increased expression of CYP1A1, CYP2E1, and CYP4A1 isoenzymes was also seen by Western blot analysis. Karela-juice feeding modulates the enzyme expression and catalytic activities in a tissue- and isoenzyme-specific manner. A marked decrease (65%) in hepatic GSH content and glutathione S-transferase (GST) activity and an increase (about two-fold) in brain GSH and GST activity was observed in diabetic rats. On the other hand, renal GST was markedly reduced, and GSH content was moderately higher than that of control rats. Western blot analyses using specific antibodies have confirmed the tissue-specific alterations in the expression of GST isoenzymes. Karela-juice feeding, in general, reversed the effect of chronic diabetes on the modulation of both P450-dependent monooxygenase activities and GSH-dependent oxidative stress related LPO and GST activities. These results have suggested that the modulation of xenobiotic metabolism and oxidative stress in various tissues may be related to altered metabolism of endogenous substrates and hormonal status during diabetes. The findings may have significant implications in elucidating the therapeutic use of antidiabetic drugs and management of Type 1 diabetes in chronic diabetic patients.  相似文献   

16.
高脂喂养大鼠肝脏的NF-κBp65表达与胰岛素抵抗的相关性   总被引:1,自引:0,他引:1  
目的探讨高脂饲料喂养大鼠肝脏NF-κBp65蛋白的表达与胰岛素抵抗的关系。方法采用高脂饲料喂养建立胰岛素抵抗大鼠模型,并用正常血糖-高血浆胰岛素钳夹技术评估。应用Western blotting方法检测大鼠肝脏中NF-κBp65蛋白的表达。结果①高脂饲料组大鼠的葡萄糖输注率明显低于基础饲料组[GIR60~120(0.76±0.28vs4.26±0.70)mg/(kg.min),P〈0.01]。②高脂饲料组大鼠肝脏NF-κBp65蛋白的表达明显高于基础饲料组(A值118.48±1.45vs68.13±4.84,P〈0.01)。③高脂胰岛素抵抗大鼠肝脏NF-κBp65蛋白表达与GIR60-120(r=-0.993,P=0.000)和ISI(r=-0.773,P=0.009)负相关。结论高脂诱导的胰岛素抵抗大鼠肝脏NF-κB的激活可能是产生肝脏和全身胰岛素抵抗的根源。  相似文献   

17.
The effect of cadmium administration (Cd 0.4 mg/kg, ip, intraperitoneally, daily for 30 days) on its accumulation, contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in different brain regions in growing and adult rats was investigated. Cadmium was found to significantly increase the levels of 5-HT and 5-HIAA in all the brain regions of adult rats while the levels of 5-HT and 5-HIAA were significantly decreased in most of the brain regions of growing rats. The accumulation of cadmium in all the brain regions was significantly more marked in growing rats compared to adults after identical exposure. In conclusion, there was an age difference in both the accumulation of cadmium and 5-HT turnover in the brain regions. However, the regional neurochemical changes were not correlated with the magnitude of cadmium accumulation in both the groups.  相似文献   

18.
目的:探讨下丘脑室旁核注射GLP-1R拮抗剂Exendin(9-39)对Nesfatin-1所致大鼠摄食和胃肠动力改变的影响及作用机制。方法:选择40只雄性Wistar大鼠,随机分成正常对照组(NC组)、Nesfatin-1组(NS组)、Exendin(9-39)组(ES组)、Nesfatin-1联合Exendin(9-39)组(NE组)。采用下丘脑室旁核(PVN)埋置套管并分别给予以上药物干预,干预前和干预后的12小时、24小时记录和比较各组大鼠的摄食、饮水及体重变化。2天后,采用甲基纤维素-酚红溶液灌胃法测各组大鼠胃排空率,实时荧光定量法(RT-PCR)检测下丘脑及胃组织GLP-1Rm RNA的表达。结果:与基础摄食量比较,NS组大鼠给药后12 h、24 h的摄食量减少(P0.05),NE组大鼠给药后12 h、24 h的摄食量减少(P0.05),但较NS组增加(P0.05);与基础饮水量比较,NS组、NE组给药后12 h饮水量减少(P0.05);与基础体重比较,NS组大鼠给药后12 h、24 h的体重降低(P0.05),NE组大鼠给药后12 h的体重降低(P0.05),但较NS组增加(P0.05);NS组大鼠给药后胃排空率较NC、NE组大鼠显著下降(P0.05),NS组大鼠下丘脑GLP-1Rm RNA的表达量较NC组增加(P0.05)。结论:中枢给予GLP-1R拮抗剂能减弱Nesfatin-1引起的摄食抑制、胃排空延迟及体重下降效应,Nesfatin-1可能通过与GLP-1的协同作用参与摄食及胃肠动力的调节。  相似文献   

19.
Effects of fluoride on the levels of Lipid peroxidation (LP) and antioxidant enzymes in the brain regions of protein undernourished (PU) and well-fed rats (WF) rats exposed to 100 ppm fluoride in drinking water were investigated. The results indicate that the mean body weights and the total brain weights of PU rats as well as those given fluoride (both WF and PU) were significantly (P < 0.05) lower than their respective controls. The weights of different brain regions were also significantly reduced (P < 0.05) in PU rats compared to WF rats except in the brain stem. Fluoride ingestion diminished the weights of WF and PU rats affecting the cerebrum only (in the case of PU rats) and the cerebellum of both WF and PU rats without an effect on the brain stem of both WF and PU. Additionally, increased LP was observed in the cerebrum and cerebellum of PU rats but after fluoride ingestion, 30% increase in LP was observed only in the cerebrum. In the brain stem however, protein undernutrition was accompanied with a significant reduction in LP but the region seems insensitive to fluoride. There were significant reductions (P < 0.05) in CAT, SOD and GSH in all the brain regions (except the GSH level in the brain stem only) of PU rats. Fluoride induced reduction in the activity of CAT in the three brain regions and on SOD activity in cerebrum only for WF rats but no effect of fluoride on all the antioxidants studied in the three brain regions for PU rats. It is concluded that WF and PU rats responded differently to fluoride toxicity. However, it seems that at the dosage used, fluoride toxicity may be a direct effect on the antioxidant enzymes.  相似文献   

20.
Exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is effective in inducing weight loss. The exact mechanisms are not fully understood. Reduced appetite and food intake may play important roles. Sweet taste contributes to food palatability, which promotes appetite. Interestingly, GLP-1 and its receptor are expressed in the taste buds of rodents and their interaction has an effect on mediating sweet taste sensitivity. Our aim was to investigate whether sweet taste will be changed after long term treatment with exenatide. The results showed that high-fat diet induced obese rats (HF-C) presented metabolic disorders in food intake, body weight, blood glucose and lipid metabolism compared with long term exenatide treated obese rats (EX) and normal chow fed control rats (NC). Meanwhile, greater preference for sweet taste was observed in HF-C rats but not in EX rats. Compared with NC rats, brain activities induced by sweet taste stimulation were stronger in HF-C rats, however these stronger activities were not found in EX rats. We further found reduced sweet taste receptor T1R3 in circumvallte taste buds of HF-C rats, while GLP-1 was increased. Besides, serum leptin was evaluated in HF-C rats with decreased leptin receptor expressed in taste buds. These changes were not observed in EX rats, which suggest them to be the underlying hormone and molecular mechanisms responsible for alterations in sweet taste of HF-C rats and EX rats. In summary, our results suggest that long term treatment with exenatide could benefit dietary obese rats partially by reversing sweet taste changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号