首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerase delta interacting protein 38 (PDIP38) was identified as a human DNA polymerase (pol) delta interacting protein through a direct interaction with p50, the small subunit of human pol delta. PDIP38 was also found to interact with proliferating cell nuclear antigen, which suggested that it might play a role in vivo in the processes of DNA replication and DNA repair in the nucleus. In order to characterize further this novel protein, we have examined its subcellular localization by the use of immunochemical and cellular fractionation techniques. These studies show that PDIP38 is a novel mitochondrial protein and is localized mainly to the mitochondria. PDIP38 was shown to possess a functional mitochondrial targeting sequence that is located within the first 35 N-terminal amino acid residues. The mature PDIP38 protein is about 50 amino acid residues smaller than the full-length precursor PDIP38 protein, consistent with it being processed by cleavage of the mitochondrial targeting sequence during entry into the mitochondria. His-tagged mature PDIP38 inhibited pol delta activity in vitro and interacted with human papillomavirus 16 E7 oncoprotein, suggesting that PDIP38 might play a role in the pol delta-mediated viral DNA replication. Although the localization of PDIP38 to the mitochondria suggests that it serves functions within the mitochondria, we cannot eliminate the possibility that it may be involved in pol delta-mediated DNA replication or DNA repair under certain conditions such as viral infection.  相似文献   

2.
Human polymerase delta-interacting protein 1 (PDIP1) is a tumor necrosis factor alpha and interleukin 6 inducible protein that interacts directly with proliferating cell nuclear antigen (PCNA) and the small subunit (p50) of DNA polymerase delta. PDIP1 binds PCNA and p50 simultaneously and stimulates polymerase delta activity in vitro in the presence, but not the absence, of PCNA. It has been suggested that PDIP1 provides a link between cytokine activation and DNA replication in eukaryotes. Here these authors report the cloning of two rat genes homologous to human PDIP1, termed rat PDIP1 and rat tumor necrosis factor-induced protein 1 (TNFAIP1). The rat PDIP1 is mapped to chromosome 1q36 cM region, spans approximately 18.7 kb, and is organized into six exons. The rat TNFAIP1 gene is mapped to chromosome 10q25 cM, spans approximately 12.9 kb, and is composed of seven exons. The deduced proteins of rat PDIP1 and rat TNFAIP1 share 63.1% sequence identity with each other and are highly conserved in the majority of the middle portion of the two proteins, which encode a BTB/POZ domain at the N-terminus and a PCNA binding motif (QTKV-EFP) at the C-terminus, respectively. The BTB / POZ domain and the PCNA binding motif are highly conserved during the evolution. Both rat PDIP1 and rat TNFAIP1 were demonstrated to interact with PCNA via BIAcore, GST pull-down, and co-immunoprecipitation assays. Like the human PDIP1, both rat PDIP1 and rat TNFAIP1 stimulate polymerase delta activity in vitro in a PCNA-dependent way.  相似文献   

3.
Mammalian DNA polymerase delta (pol delta), a key enzyme of chromosomal DNA replication, consists of four subunits as follows: the catalytic subunit; p125, which is tightly associated with the p50 subunit; p68, a proliferating cell nuclear antigen (PCNA)-binding protein; and a fourth subunit, p12. In this study, the functional roles of the p12 subunit of pol delta were studied. The inter-subunit interactions of the p12 subunit were determined by yeast two-hybrid assays and by pulldown assays. These assays revealed that p12 interacts with p125 as well as p50. This dual interaction of p12 suggests that it may serve to stabilize the p125-p50 interaction. p12 was shown to be a novel PCNA-binding protein. This was confirmed by identification of a PCNA-binding motif at its N terminus by binding assays and by site-directed mutagenesis. The activities and reaction products of recombinant pol delta containing a p12 mutant defective in PCNA binding, as well as purified recombinant pol delta and its subassemblies, were analyzed. Our results indicate that p12 contributes to PCNA-dependent pol delta activity, i.e. the p12-PCNA interaction is functional. Our data indicate that both p12 and p68 are required for optimal pol delta activity. This supports the hypothesis that the interaction between pol delta and PCNA is a divalent one that involves p12 and p68. We propose a model in which pol delta interacts with PCNA via at least two of its subunits, and one in which p12 could play a role in stabilizing the overall pol delta-PCNA complex as well as pol delta itself.  相似文献   

4.
The formation of a complex between DNA polymerase delta (pol delta) and its sliding clamp, proliferating cell nuclear antigen (PCNA), is responsible for the maintenance of processive DNA synthesis at the leading strand of the replication fork. In this study, the ability of the p125 catalytic subunit of DNA polymerase delta to engage in protein-protein interactions with PCNA was established by biochemical and genetic methods. p125 and PCNA were shown to co-immunoprecipitate from either calf thymus or HeLa extracts, or when they were ectopically co-expressed in Cos 7 cells. Because pol delta is a multimeric protein, this interaction could be indirect. Thus, rigorous evidence was sought for a direct interaction of the p125 catalytic subunit and PCNA. To do this, the ability of recombinant p125 to interact with PCNA was established by biochemical means. p125 co-expressed with PCNA in Sf9 cells was shown to form a physical complex that can be detected on gel filtration and that can be cross-linked with the bifunctional cross-linking agent Sulfo-EGS (ethylene glycol bis (sulfosuccinimidylsuccinate)). An interaction between p125 and PCNA could also be demonstrated in the yeast two hybrid system. Overlay experiments using biotinylated PCNA showed that the free p125 subunit interacts with PCNA. The PCNA overlay blotting method was also used to demonstrate the binding of synthetic peptides corresponding to the N2 region of pol delta and provides evidence for a site on pol delta that is involved in the protein-protein interactions between PCNA and pol delta. This region contains a sequence that is a potential member of the PCNA binding motif found in other PCNA-binding proteins. These studies provide an unequivocal demonstration that the p125 subunit of pol delta interacts with PCNA.  相似文献   

5.
An essential eukaryotic DNA polymerase, DNA polymerase delta (pol delta), synthesizes DNA processively in the presence of proliferating cell nuclear antigen (PCNA). Recently, a 66 kDa polypeptide (p66) that displays significant homology within its PCNA binding domain to that of fission yeast cdc27 was identified as a component of mouse and calf thymus pol delta. Our studies show that p66 interacts tightly with other subunits of pol delta during size fractionation of human cell extracts, and co-immunoprecipitates with these subunits along with PCNA-dependent polymerase activity. Active human pol delta could be reconstituted by co-expressing p125, p50, and p66 recombinant baculoviruses, but not by co-expressing p125 and p50 alone. Interaction studies demonstrated that p66 stabilizes the association between p125 and p50. Pull-down assays with PCNA-linked beads demonstrated that p66 increases the overall affinity of pol delta for PCNA. These results indicate that p66 is a functionally important subunit of human pol delta that stabilizes the pol delta complex and increases the affinity of pol delta for PCNA.  相似文献   

6.
Xie B  Mazloum N  Liu L  Rahmeh A  Li H  Lee MY 《Biochemistry》2002,41(44):13133-13142
Mammalian DNA polymerase delta was originally characterized as a tightly associated heterodimer consisting of the catalytic subunit, p125, and the p50 subunit. Recently, two additional subunits, the third (p68) and fourth subunits (p12), have been identified. The heterotetrameric human pol delta complex was reconstituted by overexpression of the four subunits in Sf9 cells, followed by purification to near-homogeneity using FPLC chromatography. The properties of the four-subunit enzyme were shown to be functionally indistinguishable from those of pol delta isolated from calf thymus. The physicochemical properties of both the reconstituted heterotetramer and the heterodimer of the p125 and p50 subunits were examined by gel filtration and glycerol gradient ultracentrifugation. These studies show quite clearly that the heterodimer and heterotetramer complexes do not behave in solution as dimeric structures. This issue is of significance because several studies of the yeast pol delta complexes have indicated that the third subunit is able to bring about the dimerization of the pol delta complex. The heterodimer is only weakly stimulated by PCNA, whereas the heterotetramer is strongly stimulated to a level with a specific activity comparable to that of the calf thymus enzyme. These results resolve earlier, conflicting reports on the response of the heterodimer to PCNA. Nevertheless, the heterodimer does have some ability to interact functionally with PCNA, consistent with evidence that the p125 subunit itself has an ability to interact with PCNA. The functional interaction of PCNA with the pol delta complex may likely involve multiple contacts.  相似文献   

7.
The ability of the cyclin-dependent kinase (CDK) inhibitor p21CDKN1A to interact with PCNA recruited to DNA replication sites was investigated to elucidate the relevance of this interaction in cell cycle arrest. To this end, expression of p21 protein fused to green fluorescent protein (GFP) was induced in HeLa cells. G1 phase cell cycle arrest induced by p21GFP occurred also at the G1/S transition, as shown by cyclin A immunostaining of GFP-positive cells. Confocal microscopy analysis and co-immunoprecipitation studies showed that p21GFP co-localized and interacted with chromatin-bound PCNA and CDK2. GFP-p21 mutant forms unable to bind to PCNA (p21PCNA-) or CDK (p21CDK-) induced cell cycle arrest, although immunoprecipitation experiments showed these mutants to be unstable. Expression of HA-tagged p21wt or mutant proteins confirmed the ability of both mutants to arrest cell cycle. p21(wt)HA and p21CDK-HA, but not p21PCNA-, co-localized and co-immunoprecipitated with chromatin-bound PCNA. Association of p21 to chromatin-bound PCNA resulted in the loss of interaction with the p125 catalytic subunit of DNA polymerase delta (pol delta). These results suggest that in vivo p21 does not interfere with loading of PCNA at DNA replication sites, but prevents, or displaces subsequent binding of pol delta to PCNA at the G1/S phase transition.  相似文献   

8.
9.
Wang Y  Zhang Q  Chen H  Li X  Mai W  Chen K  Zhang S  Lee EY  Lee MY  Zhou Y 《PloS one》2011,6(11):e27092
Mammalian DNA polymerase δ (pol δ), a four-subunit enzyme, plays a crucial and versatile role in DNA replication and various DNA repair processes. Its function as a chromosomal DNA polymerase is dependent on the association with proliferating cell nuclear antigen (PCNA) which functions as a molecular sliding clamp. All four of the pol δ subunits (p125, p50, p68, and p12) have been reported to bind to PCNA. However, the identity of the subunit of pol δ that directly interacts with PCNA and is therefore primarily responsible for the processivity of the enzyme still remains controversial. Previous model for the network of protein-protein interactions of the pol δ-PCNA complex showed that pol δ might be able to interact with a single molecule of PCNA homotrimer through its three subunits, p125, p68, and p12 in which the p50 was not included in. Here, we have confirmed that the small subunit p50 of human pol δ truthfully interacts with PCNA by the use of far-Western analysis, quantitative ELISA assay, and subcellular co-localization. P50 is required for mediation of the interaction between pol δ subassemblies and PCNA homotrimer. Thus, pol δ interacts with PCNA via its four subunits.  相似文献   

10.
The interaction between proliferating cell nuclear antigen (PCNA) and DNA polymerase delta is essential for processive DNA synthesis during DNA replication/repair; however, the identity of the subunit of DNA polymerase delta that directly interacts with PCNA has not been resolved until now. In the present study we have used reciprocal co-immunoprecipitation experiments to determine which of the two subunits of core DNA polymerase delta, the 125-kDa catalytic subunit or the 50-kDa small subunit, directly interacts with PCNA. We found that PCNA co-immunoprecipitated with human p50, as well as calf thymus DNA polymerase delta heterodimer, but not with p125 alone, suggesting that PCNA directly interacts with p50 but not with p125. A PCNA-binding motif, similar to the sliding clamp-binding motif of bacteriophage RB69 DNA polymerase, was identified in the N terminus of p50. A 22-amino acid oligopeptide containing this sequence (MRPFL) was shown to bind PCNA by far Western analysis and to compete with p50 for binding to PCNA in co-immunoprecipitation experiments. The binding of p50 to PCNA was inhibited by p21, suggesting that the two proteins compete for the same binding site on PCNA. These results establish that the interaction of PCNA with DNA polymerase delta is mediated through the small subunit of the enzyme.  相似文献   

11.
Mo J  Liu L  Leon A  Mazloum N  Lee MY 《Biochemistry》2000,39(24):7245-7254
DNA polymerase delta, the key enzyme for eukaryotic chromosomal replication, has been well characterized as consisting of a core enzyme of a 125 kDa catalytic subunit and a smaller 50 kDa subunit. However, less is known about the other proteins that may comprise additional subunits or participate in the macromolecular protein complex that is involved in chromosomal DNA replication. In this study, the properties of calf thymus pol delta preparations isolated by immunoaffinity chromatography were investigated. It is demonstrated for the first time using highly purified preparations that the pol delta heterodimer is associated with other polypeptides in high-molecular weight species that range from 260000 to >500000 in size, as determined by FPLC gel filtration. These preparations are associated with polypeptides of ca. 68-70, 34, 32, and 25 kDa. Similar findings were revealed with glycerol gradient ultracentrifugation. The p68 polypeptide was shown to be a PCNA binding protein by overlay methods with biotinylated PCNA. Protein sequencing of the p68, p34, and p25 polypeptide bands revealed sequences that correspond to the hypothetical protein KIAA0039. KIAA0039 displays a small but significant degree of homology to Schizosaccharomyces pombe Cdc27, which, like Saccharomyces cerevisiae Pol32p, has been described as the third subunit of yeast pol delta. These studies provide evidence that p68 is a subunit of pol delta. In addition, the p68-70 and p32 polypeptides were found to be derived from the 70 and 32 kDa subunits of RPA, respectively.  相似文献   

12.
In order to study the effect of trimerization of proliferating cell nuclear antigen (PCNA) on its interaction with DNA polymerase (pol) delta and its loading onto DNA by replication factor C (RF-C) we have mutated a single tyrosine residue located at the subunit interface (Tyr114) to alanine. This mutation (Y114A) had a profound effect on PCNA, since it completely abolished trimer formation as seen by glycerol gradient sedimentation and native gel electrophoresis. Furthermore, the mutant protein was unable to stimulate DNA synthesis by pol delta and did not compete effectively with wild-type PCNA for pol delta, although it was able to oligomerize and could to some extent interact with subunits of functionally active PCNA. We thus conclude that PCNA molecules that are not part of a circular trimeric complex cannot interact with the pol delta core. furthermore, the mutant protein could not be loaded onto DNA by RF-C and did not compete with wild-type PCNA for loading onto DNA, indicating that PCNA trimerization may also be a prerequisite for its recognition by RF-C. The adverse effects caused by this single mutation suggest that trimerization of PCNA is essential for the monomers to keep their overall structure and that the structural changes imposed by trimerization are important for interaction with other proteins.  相似文献   

13.
The ability of the cyclin-dependent kinase (CDK) inhibitor p21CDKN1A to interact with PCNA recruited to DNA replication sites was investigated to elucidate the relevance of this interaction in cell cycle arrest. To this end, expression of p21 protein fused to green fluorescent protein (GFP) was induced in HeLa cells. G1 phase cell cycle arrest induced by p21GFP occurred also at the G1/S transition, as shown by cyclin A immunostaining of GFP-positive cells. Confocal microscopy analysis and co-immunoprecipitation studies showed that p21GFP co-localized and interacted with chromatin-bound PCNA and CDK2. GFP-p21 mutant forms unable to bind to PCNA (p21PCNA-) or CDK (p21CDK-) induced cell cycle arrest, although immunoprecipitation experiments showed these mutants to be unstable. Expression of HA-tagged p21wt or mutant proteins confirmed the ability of both mutants to arrest cell cycle. p21wtHA and p21CDK-HA, but not p21PCNA-, co-localized and co-immunoprecipitated with chromatin-bound PCNA. Association of p21 to chromatin-bound PCNA resulted in the loss of interaction with the p125 catalytic subunit of DNA polymerase d (pol d). These results suggest that in vivo p21 does not interfere with loading of PCNA at DNA replication sites, but prevents, or displaces subsequent binding of pol d to PCNA at the G1/S phase transition.  相似文献   

14.
The relative positions of components of the DNA-dependent DNA polymerase delta (pol delta).proliferating cell nuclear antigen (PCNA).DNA complex were studied. We have shown that pol delta incorporates nucleotides close to a template biotin-streptavidin complex located 5' (downstream) to the replicating complex in the presence or absence of PCNA. PCNA-dependent synthesis catalyzed by pol delta was nearly totally (95%) inhibited by a biotin. streptavidin complex located at the 3'-end of a template with a 15-mer primer (upstream of the replicating complex), but was only partially inhibited with a 19-mer primer. With either primer, PCNA-independent synthesis was not affected by the biotin. streptavidin complex. Quantification of results with primers of varying length suggested that pol delta interacts with between 8 and 10 nucleotides of duplex DNA immediately proximal to the 3'-OH primer terminus. Using UV photocross-linking, we determined that the 125-kDa subunit of pol delta, but not the 50-kDa subunit, interacted with a photosensitive residue of a substrate oligonucleotide. Interaction apparently takes place through the C terminus of p125. Based on these results, we conclude that PCNA is located "behind" pol delta in the polymerization complex during DNA synthesis and that only the large subunit of pol delta (two-subunit form) interacts directly with DNA. A detailed model of the enzymatically active complex is proposed.  相似文献   

15.
The proliferating cell nuclear antigen (PCNA) is a highly conserved protein required for the assembly of the DNA polymerase delta (pol delta) holoenzyme. Because PCNAs from Saccharomyces cerevisiae and human do not complement each other using in vitro or in vivo assays, hybrids of the two proteins would help identify region(s) involved in the assembly of the pol delta holoenzyme. Two mutants of human PCNA, HU1 (D21E) and HU3 (D120E), and six hybrids of human and S. cerevisiae PCNA, HC1, HC5, CH2, CH3, CH4, and CH5, were prepared by swapping corresponding regions between the two proteins. In solution, all PCNA assembled into trimers, albeit to different extents. These PCNA variants were tested for stimulation of pol delta and in vitro replication of M13 and SV40 DNA as well as to stimulate the ATPase activity of replication factor C (RF-C). Our data suggest that in addition to the interdomain connecting loop and C terminus, an additional site in the N terminus is required for pol delta interaction. PCNA mutants and hybrids that stimulated pol delta and RF-C were deficient in M13 and SV40 DNA replication assays, indicating that PCNA-induced pol delta stimulation and RF-C-mediated loading are not sufficient for coordinated DNA synthesis at a replication fork.  相似文献   

16.
We addressed the analysis of the physical and functional association of proliferating cell nuclear antigen (PCNA), a protein involved in many DNA transactions, with poly(ADP-ribose) polymerase (PARP-1), an enzyme that plays a crucial role in DNA repair and interacts with many DNA replication/repair factors. We demonstrated that PARP-1 and PCNA co-immunoprecipitated both from the soluble and the DNA-bound fraction isolated from S-phase-synchronized HeLa cells. Immunoprecipitation experiments with purified proteins further confirmed a physical association between PARP-1 and PCNA. To investigate the effect of this association on PARP-1 activity, an assay based on the incorporation of radioactive NAD was performed. Conversely, the effect of PARP-1 on PCNA-dependent DNA synthesis was assessed by a DNA polymerase delta assay. A marked inhibition of both reactions was found. Unexpectedly, PARP-1 activity also decreased in the presence of p21waf1/cip1. By pull-down experiments, we provided the first evidence for an association between PARP-1 and p21, which involves the C-terminal part of p21 protein. This association was further demonstrated to occur also in vivo in MNNG (N-methyl-N'-nitro-N-nitrosoguanidine)-treated human fibroblasts. These observations suggest that PARP-1 and p21 could cooperate in regulating the functions of PCNA during DNA replication/repair.  相似文献   

17.
Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and cell cycle control. PCNA is a homotrimeric ring that, when encircling DNA, is not easily extractable. Consequently, the dynamics of protein-protein interactions established by PCNA at DNA replication sites is not well understood. We have used DNase I to release DNA-bound PCNA together with replication proteins including the p125-catalytic subunit of DNA polymerase delta (p125-pol delta), DNA ligase I, cyclin A, and cyclin-dependent kinase 2 (CDK2). Interaction with these proteins was investigated by immunoprecipitation with antibodies binding near the interdomain connector loop or to the C-terminal domain of PCNA, respectively, or with antibodies to p125-pol delta or DNA ligase I. PCNA interaction with p125-pol delta or DNA ligase I was detected only by the latter antibodies, and found to be mutually exclusive. In contrast, antibodies to PCNA co-immunoprecipitated only CDK2. A GST-p21(waf1/cip1) C-terminal peptide displaced p125-pol delta and DNA ligase I, but not CDK2, from PCNA. These results suggest that PCNA trimers bound to DNA during the S phase are organized as distinct pools able to bind selectively different partners. Among them, p125-pol delta and DNA ligase I interact with PCNA in a mutually exclusive manner.  相似文献   

18.
19.
DNA聚合酶δ结合蛋白38是microRNA-291a-5p的一个靶基因   总被引:1,自引:0,他引:1  
DNA聚合酶δ结合蛋白38 (DNA Polymerase delta-interacting protein 38,PDIP38) 是2003年新鉴定的一个基因,目前认为其可能在DNA修复、有丝分裂以及血管平滑肌细胞迁移中起重要作用。根据本实验室前期在胚胎干细胞中对该基因的研究,认为microRNA可能在PDIP38的调控过程中发挥了重要作用。为证实这种推论,运用生物信息学方法预测发现在胚胎干细胞中高表达的microRNA——microRNA-291a-5p (miR-291a-5p) 与PDIP38的开放阅读框 (ORF) 有一个配对非常理想的靶位点,通过构建该靶位点的报告基因载体以及ORF表达载体,分别进行荧光素酶报告基因分析以及细胞转染和Western blotting方法。结果证明miR-291a-5p能够直接调节PDIP38的蛋白表达。进一步运用real-time PCR和Western blotting分析证明了在胚胎干细胞中miR-291a-5p能够调节内源PDIP38的蛋白表达而对其mRNA表达无影响,这些都证明PDIP38确实是miR-291a-5p的一个靶基因。  相似文献   

20.
Two murine monoclonal antibodies to the proliferating cell nuclear antigen (PCNA), a rabbit anti-N-terminal peptide antibody and human auto-antibody to PCNA reacted with the auxiliary protein for DNA polymerase delta from fetal calf thymus following SDS-polyacrylamide gel electrophoresis, confirming the identity of PCNA and the auxiliary protein. Undenatured auxiliary protein was immunoprecipitated by the human autoantibody, but not by the monoclonal antibodies, which were raised to SDS-denatured PCNA, nor by the anti-N-terminal peptide antibody, suggesting that the epitopes recognized by both the monoclonal antibodies and the anti-peptide antibody are not exposed in the native protein. The human anti-PCNA autoantibody neutralized the activity of the auxiliary protein for DNA polymerase delta, but did not inhibit the activity of pol delta itself. The ability of pol delta to utilize template/primers containing long stretches of single-stranded template was inhibited by the anti-PCNA autoantibody, whereas the activity of pol alpha on such templates was not affected, confirming the specificity of the auxiliary protein for pol delta. The ability of PCNA, a cell cycle-regulated protein, to regulate the activity of pol delta suggests a central role for pol delta in cellular DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号