首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Melting behaviour of D-sucrose, D-glucose and D-fructose   总被引:1,自引:0,他引:1  
The melting behaviour of d-sucrose, d-glucose and d-fructose was studied. The melting peaks were determined with DSC and the start of decomposition was studied with TG at different rates of heating. In addition, melting points were determined with a melting point apparatus. The samples were identified as d-sucrose, alpha-d-glucopyranose and beta-d-fructopyranose by powder diffraction measurements. There were differences in melting between the different samples of the same sugar and the rate of heating had a remarkable effect on the melting behaviour. For example, T(o), DeltaH(f) and T(i) (initial temperature of decomposition) at a 1 degrees Cmin(-1) rate of heating were 184.5 degrees C, 126.6Jg(-1) and 171.3 degrees C for d-sucrose, 146.5 degrees C, 185.4Jg(-1) and 152.0 degrees C for d-glucose and 112.7 degrees C, 154.1Jg(-1) and 113.9 degrees C for d-fructose. The same parameters at 10 degrees Cmin(-1) rate of heating were 188.9 degrees C, 134.4Jg(-1) and 189.2 degrees C for d-sucrose, 155.2 degrees C, 194.3Jg(-1) and 170.3 degrees C for d-glucose and 125.7 degrees C, 176.7Jg(-1) and 136.8 degrees C d-fructose. At slow rates of heating, there were substantial differences between the different samples of the same sugar. The melting point determination is a sensitive method for the characterization of crystal quality but it cannot be used alone for the identification of sugar samples in all cases. Therefore, the melting point method should be validated for different sugars.  相似文献   

2.
l-Xylulose was used as a raw material for the production of l-xylose with a recombinantly produced Escherichia colil-fucose isomerase as the catalyst. The enzyme had a very alkaline pH optimum (over 10.5) and displayed Michaelis-Menten kinetics for l-xylulose with a Km of 41 mM and a Vmax of 0.23 μmol/(mg min). The half-lives determined for the enzyme at 35 °C and at 45 °C were 6 h 50 min and 1 h 31 min, respectively. The reaction equilibrium between l-xylulose and l-xylose was 15:85 at 35 °C and thus favored the formation of l-xylose. Contrary to the l-rhamnose isomerase catalyzed reaction described previously [14]l-lyxose was not detected in the reaction mixture with l-fucose isomerase. Although xylitol acted as an inhibitor of the reaction, even at a high ratio of xylitol to l-xylulose the inhibition did not reach 50%.  相似文献   

3.
Epinephrine is known to be rapidly oxidized during sepsis. Ischemia and acidosis, which often accompany sepsis, are associated with the release of weakly bound cupric ions from plasma proteins. We investigated whether copper promotes oxidation of epinephrine at both physiological and acidic pH and whether D-Asp-D-Ala-D-His-D-Lys (D-DAHK), a human albumin (HSA) N-terminus synthetic peptide with a high affinity for cupric ions, attenuates this oxidation. Epinephrine alone [100 microM] or with CuCl(2) [10 microM], and with CuCl(2) [10 microM] and D-DAHK [20 microM] at pH 7.4, 7.0, 6.5, and 6.0 were incubated for 1h at 37 degrees C. Epinephrine oxidation was measured by the spectrophotometric quantification of its oxidation product, adrenochrome. We found that adrenochrome increased, suggesting copper-induced oxidation of epinephrine. At pH 7.4, 7.0, 6.5, and 6.0, adrenochrome increased by 47%, 53%, 24%, and 6% above baseline, respectively. D-DAHK attenuated the copper-induced oxidation of epinephrine to baseline levels. These in vitro results indicate that copper-induced epinephrine oxidation is greatest at the physiological pH 7.4 as well as in severe acidosis, pH 7.0, and that D-DAHK completely inhibits this oxidation.  相似文献   

4.
6-O-(L-Tyrosylglycyl)- and 6-O-(L-tyrosylglycylglycyl)-D-glucopyranose were synthesized by condensation of the pentachlorophenyl esters of the respective di- and tripeptide with fully unprotected D-glucose. The intramolecular reactivity of the sugar conjugates was studied in pyridine-acetic acid and in dry methanol, at various temperatures and for various incubation times. The composition of the incubation mixtures was monitored by a reversed-phase HPLC method that permits simultaneous analysis of the disappearance of the starting material and the appearance of rearrangement and degradation products. To determine the influence of esterification of the peptide carboxy group on its amino group reactivity, parallel experiments were done in which free peptides were, under identical reaction conditions, incubated with D-glucose (molar ratios 1:1 and 1:5). Depending on the starting compound, different types of Amadori products (cyclic and bicyclic form), methyl ester of peptides, and Tyr-Gly-diketopiperazine were obtained.  相似文献   

5.
Erythroascorbic acid (eAsA) is a five-carbon analog of ascorbic acid, and it is synthesized from D-arabinose by D-arabinose dehydrogenase (ARA) and D-arabinono-gamma-lactone oxidase. We found an NAD+-specific ARA activity which is operative under submillimolar level of d-arabinose in the extracts of Saccharomyces cerevisiae. The hypothetical protein encoded by YMR041c showed a significant homology to a l-galactose dehydrogenase which plays in plant ascorbic acid biosynthesis, and we named it as Ara2p. Recombinant Ara2p showed NAD+-specific ARA activity with Km=0.78 mM to d-arabinose, which is 200-fold lower than that for the conventional NADP+-specific ARA, Ara1p. Gene disruptant of ARA2 lost entire NAD+-specific ARA activity and the conspicuous increase in intracellular eAsA by exogenous d-arabinose feeding, while the double knockout mutant of ARA1 and ARA2 still retained measurable amount of eAsA. It demonstrates that Ara2p, not Ara1p, mainly contributes to the production of eAsA from d-arabinose in S. cerevisiae.  相似文献   

6.
A Glu141Asn mutant Paracoccus sp. 12-A formate dehydrogenase catalyzes marked glyoxylate reduction. Additional replacement of the His332-Gln313 pair with His-Glu, which is a consensus acid/base catalyst in D-hydroxyacid dehydrogenases, further improved the catalytic activity of the enzyme as to glyoxylate reduction through enhancement of the hydrogen transfer step in the catalytic process, slightly shifting the optimal pH for the reaction. On the other hand, the replacement induced no marked activity toward other 2-ketoacid substrates, and diminished the enzyme activity as to formate oxidation. Consequently, the formate dehydrogenase was converted to a highly specific and active glyoxylate reductase through only the two amino acid replacements.  相似文献   

7.
D-Amino acid oxidase (DAAO) has been proposed to be involved in the oxidation of D-serine, an allosteric activator of the NMDA-type glutamate receptor in the brain, and to be associated with the onset of schizophrenia. The recombinant human DAAO was expressed in Escherichia coli and was isolated as an active homodimeric flavoenzyme. It shows the properties of the dehydrogenase-oxidase class of flavoproteins, possesses a low kinetic efficiency, and follows a ternary complex (sequential) kinetic mechanism. In contrast to the other known DAAOs, the human enzyme is a stable homodimer even in the apoprotein form and weakly binds the cofactor in the free form.  相似文献   

8.
Reductive amination via Schiff's base formation is a widely used reaction for laboratory and industrial applications ranging from protein immobilization to nanoparticle synthesis. One major limitation of this reaction is the slow kinetics and hence, it can take several days for the reaction to reach completion. Here we demonstrate that electromagnetic microwave can be used to accelerate the rate of reduction amination. To demonstrate proof of concept, we utilized the reductive amination between reducing end of dextran and primary amine from N-Boc-ethylenediamine as a model reaction. The reaction was conducted at room temperature to demonstrate that the enhancement was mainly due to electromagnetic effects of the microwave rather than thermal effects. We show that reductive amination reaction time was reduced from 72 h to 4 h using microwave irradiation. These results indicate non-thermal microwave effects to expedite reductive amination for synthesizing copolymers. The efficient conjugation of dextran using reductive amination provides an important tool for developing biocompatible copolymers using carbohydrates.  相似文献   

9.
D-glucosaminic acid (2-amino-2-deoxy-D-gluconic acid), a component of bacterial lipopolysaccharides and a chiral synthon, is easily prepared on a multigram scale by air oxidation of D-glucosamine (2-amino-2-deoxy-D-glucose) catalysed by glucose oxidase.  相似文献   

10.
A species of rice bran lipase (lipase II) was purified by ammonium sulfate precipitation, followed by successive chromatographies on DEAE-cellulose, Sephadex G–75 and CH-Sephadex C–50. Both polyacrylamide disc electrophoresis and ultracentrifugation demonstrated that the enzyme protein is homogeneous. The isoelectric point of the enzyme was 9.10 by ampholine electrophoresis. The sedimentation coefficient of the enzyme was evaluated to be 2.60 S, and the molecular weight to be 33,300 according to Archbald’s method. The enzyme showed the optimum pH between 7.5 and 8.0, and the optimum temperature at about 27°C. It was stable over the pH range from 5 to 9.5 and below 30°C. In substrate specificity, the enzyme exhibited a high specificity toward triglycerides having short-carbon chain fatty acids, although it was capable of hydrolyzing the ester bonds in the rice and olive oil.  相似文献   

11.
The ozonation of d-glucose-1-13C, 2-13C, and 6-13C was carried out at pH 2.5 in a semi-batch reactor at room temperature. The products present in the liquid phase were analyzed by GC-MS, HPAEC-PAD, and 13C NMR spectroscopy. Common oxidation products of glucose have also been submitted to identical ozonation conditions. For the first time, a pentaric acid was identified and its formation quantitatively correlated to the loss of C-6 of glucose in the form of carbon dioxide. Potential mechanisms for the formation of this pentaric acid are discussed. The well-accepted pathway involving the anomeric position in glucose, gluconic acid, arabinose, and carbon dioxide is reinvestigated. The origin of small molecules such as tartaric, erythronic, and oxalic acids is clarified. Finally, new reaction pathways and tentative mechanisms consistent with the formation of ketoaldonic acids and smaller acids are proposed.  相似文献   

12.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

13.
Dehydro-L-ascorbic acid (DAA) exists mainly in its C2 hydrated bicyclic form (5) in an aqueous solution, and monocyclic DAA (3), which is the expected reaction product immediately after the oxidation of AA, has not been observed by NMR spectroscopy. The formation mechanism for 5 from 3 and the stability of 5 were examined by the semi-empirical molecular orbital method (MOPAC). It was indicated that the protonation reaction was the key step in the formation of 5, therefore, the formation of 5 is thought to be more difficult under physiological conditions which mostly involve in the neutral or slightly alkaline state. However, by NMR, it was confirmed that, even in a neutral or slightly alkaline state very close to physiological conditions, the predominant form of DAA existing in an aqueous solution immediately after the enzymatic oxidation of AA was confirmed to be 5, although the possible existence of other forms of DAA at very low concentrations could not be completely excluded.  相似文献   

14.
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes.  相似文献   

15.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

16.
N-methyl-D-aspartate receptors (NMDARs) play critical roles in excitatory synaptic transmission in the vertebrate central nervous system. NMDARs need D-serine for their channel activities in various brain regions. In mammalian brains, D-serine is produced from L-serine by serine racemase and degraded by D-amino acid oxidase (DAO) to 3-hydroxypyruvate. In avian organs, such as the kidney, in addition to DAO, D-serine is also degraded to pyruvate by D-serine dehydratase (DSD). To examine the roles of these two enzymes in avian brains, we developed a method to simultaneously measure DAO and DSD activities. First, the keto acids produced from D-serine were derivatized with 3-methyl-2-benzothiazolinone hydrazone to stable azines. Second, the azine derivatives were quantified by means of reverse-phase high-performance liquid chromatography using 2-oxoglutarate as an internal standard. This method allowed the simultaneous detection of DAO and DSD activities as low as 100 pmol/min/mg protein. Chicken brain showed only DSD activities (0.4+/-0.2 nmol/min/mg protein) whereas rat brain exhibited only DAO activities (0.7+/-0.1 nmol/min/mg protein). This result strongly suggests that DSD plays the same role in avian brains, as DAO plays in mammalian brains. The present method is applicable to other keto acids producing enzymes with minor modifications.  相似文献   

17.
Oxidation of l-serine and l-threonine by a silver(III) complex anion, [Ag(HIO(6))(2)](5-), has been studied in aqueous alkaline medium. The oxidation products of the amino acids have been identified as ammonia, glyoxylic acid and aldehyde (formaldehyde for serine and acetaldehyde for threonine). Kinetics of the oxidation reactions has been followed by the conventional spectrophotometry in the temperature range of 20.0-35.0 degrees C and the reactions display an overall second-order behavior: first-order with respect to both Ag(III) and the amino acids. Analysis of influences of [OH(-)] and [periodate] on the second-order rate constants k' reveals an empirical rate expression: k(')=(k(a)+k(b)[OH(-)])K(1)/([H(2)IO(6)(3-)](e)+K(1)), where [H(2)IO(6)(3-)](e) is equilibrium concentration of periodate, and where k(a)=6.1+/-0.5M(-1)s(-1), k(b)=264+/-6M(-2)s(-1), and K(1)=(6.5+/-1.3)x10(-4)M for serine and k(a)=12.6+/-1.7M(-1)s(-1), k(b)=(5.5+/-0.2)x10(2)M(-2)s(-1), and K(1)=(6.2+/-1.5)x10(-4)M for threonine at 25.0 degrees C and ionic strength of 0.30M. Activation parameters associated with k(a) and k(b) have also been derived. A reaction mechanism is proposed to involve two pre-equilibria, leading to formation of an Ag(III)-periodato-amino acid ternary complex. The ternary complex undergoes a two-electron transfer from the coordinated amino acid to the metal center via two parallel pathways: one pathway is spontaneous and the other is assisted by a hydroxide ion. Potential applications of the Ag(III) complex as a reagent for modifications of peptides and proteins are implicated.  相似文献   

18.
YteR, a hypothetical protein with unknown functions, is derived from Bacillus subtilis strain 168 and has an overall structure similar to that of bacterial unsaturated glucuronyl hydrolase (UGL), although it exhibits little amino acid sequence identity with UGL. UGL releases unsaturated glucuronic acid from glycosaminoglycan treated with glycosaminoglycan lyases. The amino acid sequence of YteR shows a significant homology (26% identity) with the hypothetical protein YesR also from B. subtilis strain 168. To clarify the intrinsic functions of YteR and YesR, both proteins were overexpressed in Escherichia coli, purified, and characterized. Based on their gene arrangements in genome and enzyme properties, YteR and YesR were found to constitute a novel enzyme activity, "unsaturated rhamnogalacturonyl hydrolase," classified as new glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) obtained from RG type-I treated with RG lyases and releases an unsaturated galacturonic acid. The crystal structure of YteR complexed with unsaturated chondroitin disaccharide (UGL substrate) was obtained and compared to the structure of UGL complexed with the same disaccharide. The UGL substrate is sterically hindered with the active pocket of YteR. The protruding loop of YteR prevents the UGL substrate from being bound effectively. The most likely candidate catalytic residues for general acid/base are Asp143 in YteR and Asp135 in YesR. This is supported by three-dimensional structural and site-directed mutagenesis studies. These findings provide molecular insights into novel enzyme catalysis and sequential reaction mechanisms involved in RG-I depolymerization by bacteria.  相似文献   

19.
D-amino acid oxidase (DAO) degrades the gliotransmitter D-serine, a potent endogenous ligand of N-methyl-D-aspartate type glutamate receptors. It also has been suggested that D-DOPA, the stereoisomer of L-DOPA, is oxidized by DAO and then converted to dopamine via an alternative biosynthetic pathway. Here, we provide direct crystallographic evidence that D-DOPA is readily fitted into the active site of human DAO, where it is oxidized by the enzyme. Moreover, our kinetic data show that the maximal velocity for oxidation of D-DOPA is much greater than for D-serine, which strongly supports the proposed alternative pathway for dopamine biosynthesis in the treatment of Parkinson's disease. In addition, determination of the structures of human DAO in various states revealed that the conformation of the hydrophobic VAAGL stretch (residues 47-51) to be uniquely stable in the human enzyme, which provides a structural basis for the unique kinetic features of human DAO.  相似文献   

20.
Pan Y  Ayani T  Nadas J  Wen S  Guo Z 《Carbohydrate research》2004,339(12):2091-2100
N-Acetyl-D-neuraminic acid (NeuNAc) aldolase is an important enzyme for the metabolic engineering of cell-surface NeuNAc using chemically modified D-mannosamines. To explore the optimal substrates for this application, eight N-acyl derivatives of D-mannosamine were prepared, and their accessibility to NeuNAc aldolase was quantitatively investigated. The N-propionyl-, N-butanoyl-, N-iso-butanoyl-, N-pivaloyl-, and N-phenylacetyl-D-mannosamines proved to be as good substrates as, or even better than, the natural N-acetyl-D-mannosamine, while the N-trifluoropropionyl and benzoyl derivatives were poor. It was proposed that the electronic effects might have a significant influence on the enzymatic aldol condensation reaction of D-mannosamine derivatives, with electron-deficient acyl groups having a negative impact. The results suggest that N-propionyl-, N-butanoyl-, N-iso-butanoyl-, and N-phenylacetyl-D-mannosamines may be employed to bioengineer NeuNAc on cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号