首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The bacterial degradation of cholic acid under anaerobic conditions by Pseudomonas sp. N.C.I.B. 10590 was studied. The major unsaturated neutral compound was identified as 12 beta-hydroxyandrosta-4,6-diene-3,17-dione, and the major unsaturated acidic metabolite was identified as 12 alpha-hydroxy-3-oxochola-4,6-dien-24-oic acid. Eight minor unsaturated metabolites were isolated and evidence is given for the following structures: 12 alpha-hydroxyandrosta-4,6-diene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-4,6-dien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, 3,12-dioxochola-4,6-dien-24-oic acid and 12 alpha-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid. In addition, a major saturated neutral compound was isolated and identified as 3 beta,12 beta-dihydroxy-5 beta-androstan-17-one, and the only saturated acidic metabolite was 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholan-24-oic acid. Nine minor saturated neutral compounds were also isolated, and evidence is presented for the following structures: 12 beta-hydroxy-5 beta-androstane-3,17-dione, 12 alpha-hydroxy-5 beta-androstane-3,17-dione, 3 beta,12 alpha-dihydroxy-5 beta-androstan-17-one, 3 alpha,12 beta-androstan-17-one, 3 alpha,12 alpha-dihydroxy-5 beta-androstan-17-one, 5 beta-androstane-3 beta,12 beta,17 beta-triol, 5 beta-androstane-3 beta,12 alpha,17 beta-triol, 5 beta-androstane-3 alpha,12 beta,17 beta-triol and 5 beta-androstane-3 alpha,12 alpha,17 beta-triol. The induction of 7 alpha-dehydroxylase and 12 alpha-dehydroxylase enzymes is discussed, together with the significance of dehydrogenation and ring fission under anaerobic conditions.  相似文献   

3.
Nitrate-dependent salicylate degradation by the denitrifying Pseudomonas butanovora was investigated and the molar ratio of the cometabolism under anaerobic circumstances was determined. The bacterium was able to utilize salicylate as an electron donor for the reduction of nitrate. Salicylate was eliminated via catechol, which is degraded by means of catechol 2,3-oxygenases (meta-cleavage), forming 2-hydroxymuconic semialdehyde. The molar ratios of NO(3)(-)-N:salicylate existing during the experiment accorded well with the assumed 1:1 molar ratio. The tolerances of the growth, the salicylate degradation and the denitrification of P. butanovora to various heavy metal ions were also studied. Although the strain was tolerant to Pb(2+) and Cu(2+) up to 1 mM in complete medium, salicylate utilization took place only up to a concentration of 0.1 mM for both heavy metal ions. Of the heavy metal ions investigated, Cd(2+) (at a concentration of 0.05 mM) displayed the highest inhibitory effect on salicylate degradation by P. butanovora.  相似文献   

4.
The objective of this study was to evaluate the promotion effect of ammonia on the biodegradation of polylactide (PLA) under hyperthermophilic (80 °C) and thermophilic (55 °C) anaerobic condition. The results showed that PLA was transformed to lactic acid under hyperthermophilic conditions, but that the transformation ratio was negligible under thermophilic conditions. The hydrolysis process can be markedly increased with ammonia addition and microorganism activity. The maximum transformation ratios of the two kinds of PLA used in this study were 65.2% and 51.8%, respectively, with ammonia addition of 4 g N/L over 3 days treatment of anaerobic sludge. After the hyperthermophilic pretreatment, the hydrolysis products were converted to methane by methanogens under the thermophilic and anaerobic conditions. The final methane conversion ratios of the two kinds of PLA after 22 days treatment were 81.8% and 77.0%, respectively.  相似文献   

5.
Freshly isolated cultures (2060) of human intestinal bacteria of the predominant flora, among them 1029 strains of saccharolytic Bacteroides species, were tested for cholic acid transformation. Eight Bacteroides strains reduced cholate to chenodeoxycholate, while 73 strains dehydroxylated at C7, producing deoxycholate. Concurrent oxidation of hydroxyl groups, mainly at C7, was seen with many strains. No strain was able to dehydroxylate simultaneously at C7 and C12. One isolate, identified as a mixed culture of Bacteroides fragilis and B. uniformis, epimerized cholic acid at C5 and simultaneously epimerized, oxidized and dehydroxylated at C7. The following transformation products were identified: 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholanoic acid, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholanoic acid (ursocholic acid), 3 alpha,12 alpha-dihydroxy-7-keto-5 beta-cholanoic acid, 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic acid and a 3 alpha,12 alpha-dihydroxy-5 alpha-cholenoic acid. Dehydroxylating and epimerizing abilities were detected when fresh isolates were tested first for cholate transformation. They were no longer recognizable after some serial transfers. Dehydroxylation at C12 of cholate could not be demonstrated with mixed fecal cultures. The possible intermediate, however, 3 alpha,7 alpha-dihydroxy-5 beta-chol-11-enoate, was abundantly hydrogenated by stool suspensions.  相似文献   

6.
Extraction with butan-1-ol of freeze-dried microsomal fractions from livers of 3-methyl-cholarthrene-pre-treated hamsters removed about 90% of the total lipid content, but the lipid remaining proved sufficient for the cytochrome P-450 enzyme system to retain about 15-40% of its original catalytic activity for dimethylnitrosamine demethylation. Addition of butan-1-ol-extracted total phospholipid or phosphatidylcholine could not restore any activity, whereas the addition of the synthetic phospholipid dilauroyl phosphatidylcholine was able to restore almost complete activity. Synthetic dipalmitoyl or distearoyl phosphatidylcholine was ineffective in restoring the activity in this reconstituted system.  相似文献   

7.
Far-UV irradiation of Bacteroides fragilis cells under anaerobic conditions resulted in the induction of a new 95,000-molecular-weight protein and the increased synthesis of two proteins with molecular weights of 90,000 and 70,000. The latter two proteins were synthesized in small amounts in unirradiated cells. The induction of a 37,000- to 40,000-molecular-weight protein was not observed in irradiated B. fragilis cells. Caffeine, which affected the survival of irradiated B. fragilis cells and reduced host cell-mediated UV reactivation, specifically inhibited the induction of the 95,000-, 90,000-, and 70,000-molecular-weight proteins. Sodium arsenite did not affect the induction of the three inducible proteins or the survival of irradiated B. fragilis cells.  相似文献   

8.
9.
A new succinic acid and lactic acid production bioprocess by Corynebacterium crenatum was investigated in mineral medium under anaerobic conditions. Corynebacterium crenatum cells with sustained acid production ability and high acid volumetric productivity harvested from the glutamic acid fermentation broth were used to produce succinic acid and lactic acid. Compared with the first cycle, succinic acid production in the third cycle increased 120% and reached 43.4 g/L in 10 h during cell-recycling repeated fermentations. The volumetric productivities of succinic acid and lactic acid could maintain above 4.2 g/(L·h) and 3.1 g/(L·h), respectively, for at least 100 h. Moreover, wheat bran hydrolysates could be used for succinic acid and lactic acid production by the recycled C. crenatum cells. The final succinic acid concentration reached 43.6 g/L with a volumetric productivity of 4.36 g/(L·h); at the same time, 32 g/L lactic acid was produced.  相似文献   

10.
From 56 strains of strictly anaerobic gram-negative rods isolated from stool and purulent lesions the fermentation products in the presence and absence of hemin were determined by quantitative gas-solid chromatography, using a simple and more rapid chromatographic procedure. With hemin the fermentation products were propionic, acetic, lactic and succinic acid. Without hemin no or little succinic acid was formed and the main products were lactic and acetic acid. In both groups the distribution of subspecies was determined and the production of fatty acids measured quantitatively.Fourteen strains of the lesion group showed a higher metabolic activity, resulting in an increased total acid production caused by an excessive production of acetic and lactic acid. This characteristic is probably a virulence factor in these strains.All strains were protoporphyrin- and oxgall-dependent. It is postulated that these substances are used for the production of cytochromes which permits the formation of succinic acid by a fumarate reductase resulting in an increased growth rate and growth yield.  相似文献   

11.
12.
The bacterial degradation of hyodeoxycholic acid under anaerobic conditions was studied. The major acidic product has been identified as 6 alpha-hydroxy-3-oxochol-4-ene-24-oic acid whilst the major neutral product has been identified as 6 alpha-hydroxyandrosta-1,4-diene-3,17-dione. The minor acidic products were 3,6-dioxochola-1,4-diene-24-oic acid, 3-oxochol-5-ene-24-oic acid, 3-oxochol-4-ene-24-oic acid, 3-oxochola-1,4-diene-24-oic acid and 6 alpha-hydroxy-3-oxochola-1,4-diene-24-oic acid and the minor neutral products were androst-4-ene-3,17-dione, androst-4-ene-3,6,17-trione, androsta-1,4-diene-3,6,17-trione, androsta-1,4-diene-3,17-dione, 17 beta-hydroxyandrosta-1,4-diene-3-one and 6 alpha-hydroxyandrost-4-ene-3,17-dione. Evidence is presented which suggests that under aerobic conditions, one pathway of hyodeoxycholic acid metabolism exists whilst under anaerobic conditions an extra biotransformation pathway becomes operative involving the induction of a 6 alpha-dehydroxylase enzyme. A biochemical pathway of hyodeoxycholic acid metabolism by bacteria under anaerobic conditions is discussed incorporating a scheme involving such an enzyme.  相似文献   

13.
The crystal structure of three head-to-head dimers (having two cholic acid or deoxycholic acid units) linked at carbon atoms C3 by aromatic or alkyl bridges is studied. An internal coordinates system is necessary for describing the relative orientation in the space of the two bile acid residues. Five angles (three torsion and two common ones) are necessary for defining the relative position of both steroid residues in space. Carbon atoms C3 (which always carries a α-hydroxy group in natural bile acids), and C10 and C13 (which always carry β-methyl groups) of each steroid residue are suitable for this purpose. Furthermore, the distance between each C3 carbon atoms of both steroid residues will allow one to locate the steroids in space. The three dimers selected provide a large range of values for these angles. The packing, hydrogen bond network, and location of guest in the three crystals are discussed.  相似文献   

14.
15.
16.
Summary Fermentation tests in clearly defined laboratory conditions were carried out with eight functionally selected strains of Saccharomyces cerevisiae. Analysis of the data showed that there were no significant differences in malic acid production between the strains when the acid was initially present. When it was initially absent, however, significant differences were observed two strains (Nos. 1141 and 1083) showing marked productive superiority. With malic acid as the sole C source, two strains (Nos. 1109 and 1141) showed less acid consumption.  相似文献   

17.
Cholic acid:CoA ligase (EC 6.2.1.7, choloyl-CoA synthetase) and deoxycholic acid:CoA ligase catalyze the synthesis of choloyl-CoA and deoxycholoyl-CoA from their respective bile acids in rat liver. A modification of the phase partition assay was introduced which yields significantly (3-fold) higher specific activities for cholic acid:CoA ligase than previously reported. An independent method of separating choloyl-CoA from the substrates by high-pressure liquid chromatography was also developed and validates the modification. Both enzymic activities were found to be localized predominantly in the endoplasmic reticulum of rat liver. The level of either ligase in other purified, active subcellular fractions is consistent with the level of contamination by endoplasmic reticulum, estimated by using marker enzymes. Hence, the ligase assay can be used as a sensitive enzymic marker for endoplasmic reticulum in rat liver. The kinetic parameters of both enzymic activities were determined by using purified rough endoplasmic reticulum from rat liver. While the apparent maximal velocities for the two substrates are similar, the Michaelis constant for deoxycholate is significantly lower than that for cholate. Taurocholate and deoxycholate are shown to be competitive inhibitors of cholic acid:CoA ligase. The inhibition constant of deoxycholate is similar to its Michaelis constant for the deoxycholoyl-CoA-synthesizing reaction, suggesting that the same enzyme is responsible for both ligase activities.  相似文献   

18.
19.
Bile acid amides and oxazolines were synthesized by a sequence of steps involving the reaction of the free bile acid with formic acid to yield the formyloxy derivative, preparation of the formyloxy acid chloride, condensation of the acid chloride with 2-amino-2-methyl-1-propanol to give the amide and, finally, cyclization of the amide with thionyl chloride to give the oxazoline. The oxazolines were characterized by physical constants, thin layer and gas-liquid chromatography and identified by elemental analysis and gas-liquid chromatography-mass spectrometry. Some of the bile acid oxazoline derivatives alter the activity of bacterial 7-dehydroxylases in vitro, and inhibit the growth of certain anaerobic bacteria in pure culture.  相似文献   

20.
Secondary bile acid-producing bacteria were isolated from human feces to improve our appreciation of the functional diversity and redundancy of the intestinal microbiota. In total, 619 bacterial colonies were isolated using a nutrient-poor agar medium and the level of secondary bile acid formation was examined in each by a liquid culture, followed by thin-layer chromatography. Of five strains analyzed by 16S rRNA gene sequencing and biochemical testing, one was identified as Bacteroides intestinalis AM-1, which was not previously recognized as a secondary bile-acid producer. GC-MS revealed that B. intestinalis AM-1 converts cholic acid (CA) and chenodeoxycholic acid into their 7-oxo derivatives, 7-oxo-deoxycholic acid (7-oxo-DCA) and 7-oxo-lithocholic acid, respectively. Thus, B. intestinalis AM-1 possesses 7α-hydroxysteroid dehydrogenase (7α-HSDH) activity. In liquid culture, B. intestinalis AM-1 showed a relatively higher productivity of 7-oxo-DCA than Escherichia coli HB101 and Bacteroides fragilis JCM11019T, which are known to possess 7α-HSDH activity. The level of 7α-HSDH activity was higher in B. intestinalis AM-1 than in the other two strains under the conditions tested. The 7α-HSDH activity in each of the three strains is not induced by CA; instead, it is regulated in a growth phase-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号