共查询到20条相似文献,搜索用时 7 毫秒
1.
Christoph J. Hueck Michael J. Hantman Vivek Bajaj Christine Johnston Catherine A. Lee Samuel I. Miller 《Molecular microbiology》1995,18(3):479-490
Salmonella typhimurium secreted proteins (Ssp) were previously implicated in epithelial cell invasion. Here we describe four genes ( sspB , sspC , sspD , and sspA ), located between spaT and prgH , which encode proteins of 63, 42, 36, and 87 kDa, respectively. These Ssp are homologous to Shigella flexneri secreted proteins lpaB, lpaC, lpaD and lpaA. A non-invasive mutant with a transposon insertion in sspC lacks Ssp of 87,42 and 36 kDa. Complementation analyses show that sspC and sspD encode the 42 and the 36 kDa Ssp, while the 87 kDa Ssp is encoded by sspA . sspC and sspD , but not sspA are required for invasion. Amino-terminal sequencing shows that SspC and SspA are secreted without amino-terminal processing. We further demonstrate that Ssp secretion requires proteins encoded by prgHIJK , homologous to the Shigella lpa secretion system, since SspA is abundantly secreted by wild-type bacteria but is completely retained within the cellular fraction of a prgHIJK mutant. A precipitate containing abundant SspC and three other major Ssp of 63,59 and 22 kDa was isolated from culture supernatants of wild-type bacteria. These data indicate that major secreted invasion determinants of S. typhimurium are structurally and functionally homolgous to S. flexneri lpa proteins. 相似文献
2.
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H(2)O(2), and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H(2)O(2,) as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium. 相似文献
3.
4.
5.
6.
Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum 总被引:27,自引:0,他引:27
Within the bacterial flagellum the basal-body rod, the hook, the hook-associated proteins (HAPs), and the helical filament constitute an axial substructure whose elements share structural features and a common export pathway. We present here the amino acid sequences of the hook protein and the three HAPs of Salmonella typhimurium, as deduced from the DNA sequences of their structural genes (flgE, flgK, flgL and fliD, respectively). We compared these sequences with each other and with those for the filament protein (flagellin) and four rod proteins, which have been described previously (Joys, 1985; Homma et al., 1990; Smith & Selander, 1990). Hook protein most strongly resembled the distal rod protein (FlgG) and the proximal HAP (HAP1), which are thought to be attached to the proximal and distal ends of the hook, respectively; the similarities were most pronounced near the N and C termini. Hook protein and flagellin, which occupy virtually identical helical lattices, did not resemble each other strongly but showed some limited similarities near their termini. HAP3 and HAP2, which form the proximal and distal boundaries of the filament, showed few similarities to flagellin, each other, or the other axial proteins. With the exceptions of the N-terminal region of HAP2, and the C-terminal region of flagellin, proline residues were absent from the terminal regions of the axial proteins. Moreover, with the exception of the N-terminal region of HAP2, the terminal regions contained hydrophobic residues at intervals of seven residues. Together, these observations suggest that the axial proteins may have amphipathic alpha-helical structure at their N and C termini. In the case of the filament and the hook, the terminal regions are believed to be responsible for the quaternary interactions between subunits. We suggest that this is likely to be true of the other axial structures as well, and specifically that interaction between N-terminal and C-terminal alpha-helices may be important in the formation of the axial structures of the flagellum. Although consensus sequences were noted among some of the proteins, such as the rod, hook and HAP1, no consensus extended to the entire set of axial proteins. Thus the basis for recognition of a protein for export by the flagellum-specific pathway remains to be identified. 相似文献
7.
8.
9.
10.
Upon contact with intestinal epithelial cells, Salmonella enterica serovar spp. inject a set of bacterial proteins into host cells via the bacterial SPI-1 type III secretion system. SopE, SopE2 and SopB, activate CDC42 and Rac to initiate actin cytoskeleton rearrangements. SipA and SipC, two Salmonella actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. SptP promotes the recovery of the actin cytoskeleton rearrangements by antagonizing CDC42 and Rac. Therefore, Salmonella-induced reversible actin cytoskeleton rearrangements are the result of two coordinated steps: (i) stimulation of host signal transduction to indirectly promote actin rearrangements and (ii) direct modulation of actin dynamics. 相似文献
11.
The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell 总被引:4,自引:4,他引:4
The ability of Salmonella typhimurium to interact with host cells is largely dependent on the function of a type III protein-secretion system encoded at centisome 63 of its chromosome. We have shown here that two targets of this protein-secretion system, SipB and SipC, are translocated into cultured intestinal Henle-407 cells. Translocation required the function of the type III secretion apparatus, as an S. typhimurium strain carrying a mutation in invA , which encodes an essential component of this system, failed to translocate the Sip proteins. Null mutations in the genes encoding SipB, SipC or SipD, prevented protein translocation, indicating that these proteins are involved in the translocation process. In contrast, mutations in sipA and sptP , which also encode secreted proteins, did not interfere with the translocation of SipC, indicating that only a subset of targets of the type III secretion system act as translocases. Externally or internally localized bacteria could direct protein translocation into Henle-407 cells as this process occurred in the presence of cytochalasin D at a concentration that prevented bacterial entry, or in the presence of gentamicin added shortly after bacterial internalization at a concentration that killed extracellular Salmonella . These results indicate that protein translocation into host cells may be a universal function of all type III secretion systems. 相似文献
12.
The alveolar epithelial basement membrane is believed to play important roles in lung development, in maintaining normal alveolar architecture, and in guiding repair following lung injury. However, little is known about the formation of this structure, or of the mechanisms which mediate interactions between the epithelium and specific matrix macromolecules. Since type IV collagen is a major structural component of basement membranes, we investigated the production of type IV collagen-binding proteins by primary cultures of rat lung type II pneumocytes. Cultures were labeled for up to 24 h with 3H-labeled amino acids or [3H]mannose. Soluble collagen-binding proteins which accumulated in the culture medium were isolated by chromatography on collagen-Sepharose and examined by SDS-polyacrylamide gel electrophoresis. The major type IV collagen-binding protein (CBP1) was identified as fibronectin. We also identified a novel disulfide-bonded collagen-binding glycoprotein (CBP2; Mr = 45,000, reduced). This protein was not recognized by polyclonal antibodies to fibronectin, and showed no detectable binding to denatured type I collagen. The protein was resolved from fibronectin and partially purified by sequential chromatography on gelatin and type IV collagen-Sepharose. We suggest that type II pneumocyte-derived collagen-binding proteins contribute to the formation of the epithelial basement membrane and/or mediate the attachment of these cells to collagenous components of the extracellular matrix. 相似文献
13.
Nikolaus T Deiwick J Rappl C Freeman JA Schröder W Miller SI Hensel M 《Journal of bacteriology》2001,183(20):6036-6045
The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) is required for systemic infections and intracellular accumulation of Salmonella enterica. This system is induced by intracellular Salmonella and subsequently transfers effector proteins into the host cell. Growth conditions either inducing expression of the type III secretion system or the secretion of substrate proteins were defined. Here we report the identification of a set of substrate proteins consisting of SseB, SseC, and SseD that are secreted by the SPI2 system in vitro. Secretion was observed if bacterial cells were exposed to acidic pH after growth in minimal medium with limitation of Mg(2+) or phosphate. SseB, -C, and -D were isolated in a fraction detached from the bacterial cell surface by mechanical shearing, indicating that these proteins are predominantly assembled into complexes on the bacterial cell surface. The three proteins were required for the translocation of SPI2 effector proteins SspH1 and SspH2 into infected host cells. Thus, SseB, SseC, and SseD function as the translocon for effector proteins by intracellular Salmonella. 相似文献
14.
Translation of the Flagellar Gene fliO of Salmonella typhimurium from Putative Tandem Starts 下载免费PDF全文
The flagellar gene fliO of Salmonella typhimurium can be translated from an AUG codon that overlaps the termination codon of fliN (K. Ohnishi et al., J. Bacteriol. 179:6092–6099, 1997). However, it had been concluded on the basis of complementation analysis that in Escherichia coli a second start codon 60 bp downstream was the authentic one (J. Malakooti et al., J. Bacteriol. 176:189–197, 1994). This raised the possibility of tandem translational starts, such as occur for the chemotaxis gene cheA; this possibility was increased by the existence of a stem-loop sequence covering the second start, a feature also found with cheA. Protein translated from the first start codon was detected regardless of whether the second start codon was present; it was also detected when the stem-loop structure was disrupted or deleted. Translation from the second start codon, either as the natural one (GUG) or as AUG, was not detected when the first start and intervening sequence were intact. Nor was it detected when the first codon was attenuated (by conversion of AUGAUG to AUAAUA; in S. typhimurium there is a second, adjacent, AUG) or eliminated (by conversion to CGCCGC); disruption of the stem-loop structure still did not yield detectable translation from the second start. When the entire sequence up to the second start was deleted, translation from the second start was detected provided the natural codon GUG had been converted to AUG. A fliO null mutant could be fully complemented in swarm assays whenever the first start and intervening sequence were present, regardless of the state of the second start. Reasonably good complementation occurred when the first start and intervening sequence were absent provided the second start was intact, either as AUG or as GUG; thus translation from the GUG codon must have been occurring even though protein levels were too low to be detected. The translated intervening sequence is rather divergent between S. typhimurium and E. coli and corresponds to a substantial cytoplasmic domain prior to the sole transmembrane segment, which is highly conserved; the sequence following the second start begins immediately prior to that transmembrane segment. The significance of the data for FliO is discussed and compared to the equivalent data for CheA. Attention is also drawn to the fact that given an optimal ribosome binding site, AUA can serve as a fairly efficient start codon even though it seldom if ever appears to be used in nature. 相似文献
15.
Investigators use both in vitro and in vivo models to better understand infectious disease processes. Both models are extremely useful in research, but there exists a significant gap in complexity between the highly controlled reductionist in vitro systems and the largely undefined, but relevant variability encompassing in vivo animal models. In an effort to understand how Salmonella initiates disease at the intestinal epithelium, in vitro models have served a useful purpose in allowing investigators to identify molecular mechanisms responsible for Salmonella invasion of host cells and stimulation of host inflammatory responses. Identification of these molecular mechanisms has generated hypotheses that are now being tested using in vivo models. Translating the in vitro findings into the context of an animal model and subsequently to human disease remains a difficult challenge for any disease process. 相似文献
16.
Flagellar switch of Salmonella typhimurium: gene sequences and deduced protein sequences. 总被引:8,自引:27,他引:8 下载免费PDF全文
The fliG, fliM, and fliN genes of Salmonella typhimurium encode flagellar components that participate in energy transduction and switching. We have cloned these genes and determined their sequences. The deduced amino acid sequences correspond to proteins with molecular masses of 36,809, 37,815, and 14,772 daltons, respectively. None of the protein sequences are especially hydrophobic or look as though they correspond to integral membrane proteins, a result consistent with other evidence suggesting that the proteins may be peripheral to the membrane, possibly mounted onto the basal body M ring. The fliL gene, which immediately precedes fliM, is of unknown function; it encodes a protein with a deduced molecular mass of 17,082 daltons. The hydropathy profile of FliL indicates that it is likely to be an integral membrane protein with at least one spanning segment, near its N terminus. None of the four proteins exhibit consensus N-terminal signal sequences. Comparison of the fliL, fliM, and fliN sequences with the homologous ones in Escherichia coli reveals ranges of similarities of 77 to 95% at the amino acid level and 75 to 86% at the nucleotide level, with the majority (58 to 89%) of codon changes being synonymous ones. 相似文献
17.
P. Katinakis R. M. Klein Lankhorst J. Louwerse A. van Kammen R. C. van den Bos 《Plant molecular biology》1988,11(2):183-190
Bacteroids of Rhizobium leguminosarum in root nodules of Pisum sativum are enclosed by a plant-derived peribacteriod membrane (PBM). The contents of the interstitial peribacteroid space (PBS) between bacteroid membrane and PBM were isolated by a controlled osmotic shock of PBM-enclosed bacteroids and analysed by two-dimensional gel electrophoresis. Silver staining revealed approximately 40 PBS polypeptides. Ex planta
35S-methionine labeling of PBM-enclosed bacteroids revealed that about 90% of the PBS proteins are synthesized by the bacteroid. Approximately 30% of the PBS polypeptides are common between the PBS and the periplasmic space of free-living bacteria; one (38kDa) PBS protein is also excreted by free-living bacteria in the bacterial culture medium. At least four bacteroid-encoded PBS polypeptides were clearly identified as symbiosis-specific. 相似文献
18.
Salmonella typhimurium, which causes gastroenteritis in calves and humans as well as a typhoid-like disease in mice, uses numerous virulence factors to infect its hosts. Genes encoding these factors are regulated by many environmental conditions and regulatory pathways in vitro. Many virulence genes are specifically induced at particular sites during infection or in cultured host cells. The complex regulation of virulence genes observed in vitro may be necessary to restrict their expression to specific locations within the host. In vitro and in vivo studies provide clues about how virulence genes might be regulated in vivo. Future studies must assess the actual environmental signals and regulators that modulate each virulence gene in vivo and determine how multiple regulatory pathways are integrated to co-ordinate the appropriate expression of virulence factors at specific sites in vivo. 相似文献
19.
Evidence for related virulence sequences in plasmids of Salmonella dublin and Salmonella typhimurium 总被引:26,自引:0,他引:26
Transposon-insertion mutants were prepared from virulent field isolates of Salmonella dublin and Salmonella typhimurium. Detailed restriction-enzyme mapping of the single sites of TnA insertion in two mutants (M51 and M173) of S. dublin that showed diminished virulence in a mouse assay indicated that these sites were about 5 kbp apart on the approximately 70 kbp plasmid harboured by the isolate. A Tn10-insertion mutant (M242) of S. typhimurium that showed diminished virulence was also identified. A single copy of Tn10 was inserted into the approximately 90 kbp plasmid harboured by this isolate. Hybridization studies indicated that homology existed between the region encompassing the sites of TnA insertion in M51 and M173 and that encompassing the site of Tn10 insertion in M242. Restriction mapping indicated that the two regions were very similar and could even be identical and, if so, the Tn10 insertion in M242 could be mapped to a point 1.5 kbp from the TnA insertion in M51 and 6.5 kbp from that in M173. It appeared that the maximal extent of the putative similarity/identity was between 13 and 23 kbp. It is proposed that this stretch of high homology could represent a virulence sequence that has been conserved during the evolutionary divergence of the two Salmonella serotypes. 相似文献
20.
Kaarina Pihakaski-Maunsbach Ilkka Tamminen Milla Pietiäinen Marilyn Griffith 《Physiologia plantarum》2003,118(3):390-398
During cold-acclimation, winter rye ( Secale cereale L) leaves secrete antifreeze proteins (AFPs) into the apoplast. The AFPs bind to ice and modify its growth, which is easily observed in vitro . However, it is not yet known whether in planta AFPs interact with ice or whether they exert cryoprotective effects. These experiments are difficult to conduct with intact plants, so the aim of this work was to determine whether AFPs are produced in response to cold temperature in cell culture and to examine their function by using suspension cells. We showed that suspension cells secreted three of the six known winter rye AFPs into the culture medium during acclimation at 4°C. These AFPs were not present in washed suspension cells, thus indicating that they are not firmly bound to the cell walls. In order to examine the function of extracellular AFPs, non-acclimated (NA) winter rye suspension cells and protoplasts isolated from NA winter rye leaves were then frozen and thawed in the presence of AFPs extracted from cold-acclimated winter rye leaves. The AFPs had no effect on the survival of NA protoplasts after freezing; however, they lowered the lethal temperature at which 50% of the cells are killed by freezing (LT50 ) of NA suspension cells by 2.5°C. We conclude that low above-zero temperatures induce winter rye suspension cells to secrete AFPs free in solution where they can protect intact suspension cells, but not protoplasts, from freezing injury, presumably by interacting with extracellular ice. 相似文献