首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene (12q22-q24) resulting in a primary deficiency of the PAH enzyme activity, intolerance to the dietary intake of phenylalanine (Phe) and production of the phenylketonuria (PKU) disease. To date there have been no reports on the molecular analysis of PKU in Iranian population. In this study, the states of the PKU disease in terms of prevalence and mutation spectrum among patients reside in the institutions for mentally retarded in Isfahan was investigated. In the first step, 611 out of 1541 patients with PKU phenotype or severe mental retardation were screened for the PKU disease using the Guthrie bacterial inhibition assay (GBIA) followed by HPLC. Among the patients screened 34 (5.56%) were found positive with abnormal serum Phe of above 7mg/dl. In the next step, the presence of 18 common mutations of the PAH gene in 26 of the patients with classical PKU (serum Phe above 20mg/dl) was investigated, using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Of the 52 independent mutant alleles that were analyzed, 34 (65.38%) were genotyped showing 8 mutations as follows: R252W (15.38%), Q232Q (13.46%), R261Q (7.69%), delL364 (7.69%), IVS10-11g>a (5.77%), L333F (5.77%), V245V (5.77%) and S67P (3.85%). The results from this study may serve as a reference to analyze the PKU mutations in other part of Iran, and to establish diagnostic tests for carrier detection and prenatal diagnosis of the PKU disease in Iranian population.  相似文献   

2.
改良的PEP方法在无创性产前基因诊断中的应用   总被引:7,自引:2,他引:5  
王敏  金春莲  林长坤  王雁  孙开来  武盈玉 《遗传》2001,23(3):195-198
应用显微操作技术获取孕妇外周血中的单个有核红细胞,改良的PEP方法扩增单个有核红细胞的全基因组DNA;在此基础上,应用荧光标记聚合酶链反应扩增9个微卫星片段,进行基因型分析判定单个有核红细胞来源。综合性别和DMD基因内的数个STR位点连锁分析进行DMD基因诊断,应用PCR-STR连锁分析进行PKU基因诊断。结果显示,对10例DMD高危胎儿中的6例成功地进行了无创性产前基因诊断。同时对1例PKU也成功地进行了无创性产前基因诊断。改良的PEP方法扩增单个细胞的全基因组可以满足基因诊断的要求,是无创性产前基因诊断中一种极有价值的全基因组扩增的方法。 Abstract:We investigated the feasibility of using improved primer extension preamplificat ion method to diagnose DMD and PKU. The fetal nucleated red blood cells from the peripheral blood of pregnant women were detected and individually retrieved into glass capillary pipettes using a micromanipulator under microscopic observation. The whole genome of a single cell was amplified by improved primer extension preamplification (PEP).Genotypes were analyzed by amplifying the 9 STR fragments using fluorescence?PCR technique and NRBC's(nucleated red blood cell) origin w as determined.We diagnosed DMD prenatally using sex determination and linkage an alysis of several STR sites of dystrophin,and we diagnosed PKU prenatally using PCR?STR linkage analysis.6 of 10 potential DMD patients were diagnosed,includin g 1 male fetal patient,1 potential PKU patient was also diagnosed.The improved P EP method is a very valuable method of amplifying the whole genome of single cel ls,and the products of amplification are enough to the requirements of DNA in no n-invasive prenatal diagnosis.  相似文献   

3.
Summary We have screened seven Spanish phenylketonuric (PKU) families for the most prevalent Mediterranean and Caucasian mutations, and have subsequently found mutations P281L and IVS10. We have analyzed these two mutations in 23 of our patients. The frequencies found correspond to those of Mediterranean countries, such as Italy. This is the first report of a mutation analysis in the Spanish PKU population.  相似文献   

4.
Molecular analysis of 289 chromosomes has been performed in a cohort of phenylketonuria (PKU) patients whose ancestors lived in five Italian regions, Calabria, Campania, Piemonte, Puglia/Basilicata and Sicilia. Phenylalaninehydroxylase (PAH) gene mutations and minihaplotypes (combinations of PAH gene STR and VNTR systems) have been determined for 78.5 and 64%, respectively, of the chromosomes studied. 21 different minihaplotypes and 24 PKU mutations were found. Heterogeneity tests carried out for the frequencies of mutations and minihaplotypes show that the distribution of eight mutations and four minihaplotypes is statistically heterogeneous in the five Italian regions. Although the evolutionary rate of microsatellites or the age of these mutations is difficult to estimate with accuracy, our findings taken together show a genetic stratification of the Italian population. These results rule out allelic homogeneity of PKU at the molecular level between regions of Italy, yet minihaplotype data may be of practical use for a multistep approach to PAH gene genotyping.  相似文献   

5.
Two missense mutations in the phenylalanine hydroxylase (PAH) genes of Orientals with phenylketonuria (PKU) have been identified. A G-to-A transition in exon 7 of the gene results in the substitution of Gln243 for Arg243 (R243Q) and accounts for 18% of all PKU chromosomes among Chinese. An A-to-G transition in exon 6 of the gene results in the substitution of Cys204 for Tyr204 (Y204C) and identifies about 13 and 5% of all PKU chromosomes in the Chinese and Japanese populations, respectively. The R243Q construct produced less than 10% of normal PAH activity in in vitro expression analysis in a eukaryotic cell system, and patients homozygous for this substitution exhibit a severe clinical phenotype. These results are consistent with previous findings in this expression system. The Y204C construct, however, produced near normal levels of PAH enzyme activity and immunoreactivity in this in vitro expression system. Because this substitution is present only on PKU chromosomes, it is a valuable marker for identifying the corresponding mutant allele for carrier screening of PKU. With the characterization of these two substitutions, about 60% of PKU alleles in China can now be identified. The continuing search for additional PKU mutations will permit effective carrier screening and prenatal gene diagnosis of PKU in East Asia.  相似文献   

6.
Hereditary hyperphenylalaninemia (HPA) is a disorder of amino acid metabolism and results from an insufficiency of hepatic phenylalanine hydroxylase (PAH). HPA phenotypes form a spectrum ranging from classical phenylketonuria (PKU) to mild hyperphenylalaninemia (MHP). The phenotypic diversity reflects heterogeneity at the molecular level, and more than 320 different mutations in the PAH gene are known to date. The association of 3 mutations (R408W, IVS10 and A403V) common in different European populations with a variable number tandem repeat (VNTR) and short tandem repeat sites (minihaplotype) in the PAH gene was examined in a group of Polish PKU and MHP patients. Additionally, minihaplotypes were established for another 16 mutations. The presented data support the hypothesis that the R408W/VNTR3/STR238 allele originated among pre-Indo-Europeans on the territory in present-day Lithuania and Belarus. Mutation IVS10nt-11g-->a (IVS10) is strongly associated with VNTR7/STR250 minihaplotype and is possibly of Mediterranean origin.  相似文献   

7.
Phenylketonuria (PKU) is a metabolic disorder that results from a deficiency of hepatic phenylalanine hydroxylase (PAH). Identification of the PKU genotype is useful for predicting clinical PKU phenotype. More than 400 mutations resulting in PAH deficiency have been reported worldwide. We used a genedetecting instrument to identify the nine prevalent Japanese mutations in the PAH gene among 31 PKU patients as a preliminary study. This instrument can automatically detect mutations through the use of allele-specific oligonucleotide (ASO) capture probes, and gave results comparable to those of sequencing studies. Each country has uniquely prevalent and specific mutations causing PKU, and less than 50 types of such mutations are generally present in each country. Early genotyping of PKU makes it possible to identify the phenotype and select the optimal therapy for the disease. For early genotyping, the instrumental method described here shortens the time required for genotyping based on mRNA and/or genomic DNA of PKU parents.  相似文献   

8.
Three novel missense mutations have been identified in the phenylalanine hydroxylase (PAH) genes of Chinese individuals afflicted with various degrees of phenylketonuria (PKU). A T-to-C transition was observed in exon 5 of the gene, resulting in the substitution of Phe161 by Ser161. Two substitutions, G-to-T and T-to-G, were observed in exon 7, resulting in the substitution of Gly247 by Val247 and Leu255 by Val255, respectively. Expression analysis demonstrated that these mutant proteins produced between 0 and 15% of normal PAH enzyme activity. Population screening of a Chinese sample population indicates that these mutations are quite rare, together accounting for only about 4% of all PKU alleles among the Chinese. The P161S and G247V mutations were each present on a single PAH RFLP haplotype 4 chromosome in patients form Northern China, while the L255V mutation was present on chromosomes of both haplotypes 18 and 21 in patients from Southern China. These results suggest that the remaining 30% of uncharacterized PKU alleles in the Chinese population may bear a large number of relatively rare PAH mutations.  相似文献   

9.
To date more than 1000 different variants in the PAH gene have been identified in patients with phenylketonuria (PKU). In Iran, several studies have been performed to investigate the genetics bases of the PKU in different parts of the country. In this study, we have analysed and present an update of the mutational landscape of the PAH gene as well as the population genetics and frequencies of detected variants for each cohort. Published articles on PKU mutations in Iran were identified through a comprehensive PubMed, Google Scholar, Web of Science (ISI), SCOPUS, Elsevier, Wiley Online Library and SID literature search using the terms: “phenylketonuria”, “hyperphenylalaninemia”, and “PKU” in combination with “Iran”, “Iranian population”, “mutation analysis”, and “Molecular genetics”. Among the literature-related to genetics of PKU, 18 studies were on the PKU mutations. According to these studies, in different populations of Iran 1497 patients were included for mutation detection that resulted in detection of 129 different mutations. Results of genetic analysis of the different cohorts of Iranian PKU patients show that the most prevalent mutation in Iran is the pathogenic splice variant c.1066-11G > A, occurring in 19.54% of alleles in the cohort. Four other common mutations were p.Arg261Gln, p.Pro281Leu, c.168 + 5G > C and p.Arg243Ter (8.18%, 6.45%, 5.88% and 3.7%, respectively). One notable feature of the studied populations is its high rate of consanguineous marriages. Considering this feature, determining the prevalent PKU mutations could be advantageous for designing screening and diagnostic panels in Iran.  相似文献   

10.
The aim of this study was to characterize the phenylketonuria (PKU) alleles in the Spanish population, by both identifying the causative mutations and analyzing the RFLP haplotypes and the VNTR and short-tandem-repeat alleles associated with the phenylalanine hydroxylase (PAH) gene. We have investigated 129 independent mutant chromosomes, using denaturing gradient gel electrophoresis (DGGE) and direct sequencing. Ninety percent of the alleles were identified, and a total of 40 different mutations were detected. The mutational spectrum includes seven previously unreported mutations: P122Q, D129G, P147S, D151G, A165T, S196fs, and P407S. Seven mutations represent 43% of the Spanish PKU alleles, the most common being IVS10nt-11g-->a (14.7%), I65T (8.5%), and V388M (6.2%). The remaining 33 mutations are rare. The mutation profile and relative frequencies are markedly different from those in northern Europe, also showing unique features compared with those in other, southern European populations. The association analysis with polymorphic markers in the PAH gene provides valuable information for population-genetic studies and investigation of the origins of the mutations. This study may serve as reference in the analysis of the contemporary distributions and frequencies of the PKU mutations in related populations, with particular relevance in Latin American countries.  相似文献   

11.
In order to investigate the molecular basis of phenylketonuria (PKU) in Spain, we analyzed the restriction fragment length polymorphism (RFLP) haplotypes and common mutations in the phenylalanine hydroxylase (PAH) gene in 32 unrelated Spanish PKU families. The distribution of RFLP haplotypes differs from that of northern Europe. Mutant haplotypes 2 and 3 were completely absent in our sample. Approximately 65% of the mutant alleles are confined to three RFLP haplotypes, namely haplotypes 1, 6 and 9, also frequently found in other Mediterranean populations. We screened for previously described PKU mutations using the polymerase chain reaction and allele-specific oligonucleotides, and found IVS10,165T, E280K and P281L as the major mutations, representing 41% of the PKU alleles. Other mutations found were Y414C, and a new one, P244L. Mutations R408W and IVS12, prevalent in northern Europe, as well as others present in southern European populations (R252W, R261Q, L249F) were not detected in our sample. Our results reveal the genetic heterogeneity present in the Spanish PKU population, which shows similarities to others of Mediterranean origin.  相似文献   

12.
The presence of nine mutations in the phenylalanine hydroxlase (PAH) gene, previously described in phenylketonuria (PKU) patients of other Mediterranean and European populations, was assessed in 47 Greek PKU and 3 hyperphenylalaninaemia (HPA) patients. Of the nine mutations investigated, only five were detected, characterizing 31 % of the PKU alleles in our patients.  相似文献   

13.
Phenylketonuria (PKU) and mild hyperphenylalaninemia (MHP) are allelic disorders caused by mutations in the gene encoding phenylalanine hydroxylase (PAH). Previous studies have suggested that the highly variable metabolic phenotypes of PAH deficiency correlate with PAH genotypes. We identified both causative mutations in 686 patients from seven European centers. On the basis of the phenotypic characteristics of 297 functionally hemizygous patients, 105 of the mutations were assigned to one of four arbitrary phenotype categories. We proposed and tested a simple model for correlation between genotype and phenotypic outcome. The observed phenotype matched the predicted phenotype in 79% of the cases, and in only 5 of 184 patients was the observed phenotype more than one category away from that expected. Among the seven contributing centers, the proportion of patients for whom the observed phenotype did not match the predicted phenotype was 4%-23% (P<.0001), suggesting that differences in methods used for mutation detection or phenotype classification may account for a considerable proportion of genotype-phenotype inconsistencies. Our data indicate that the PAH-mutation genotype is the main determinant of metabolic phenotype in most patients with PAH deficiency. In the present study, the classification of 105 PAH mutations may allow the prediction of the biochemical phenotype in >10,000 genotypes, which may be useful for the management of hyperphenylalaninemia in newborns.  相似文献   

14.
The aim of this work was to perform genetic analysis on 18 different blood-spot samples collected from neonates detected as hyperphenylalaninemic by Northeastern Italian screening program. DNA was extracted from blood-spots. Exons/introns of PAH gene were amplified by polymerase chain reaction (PCR), and PCR products were purified and sequenced with both forward and reverse primers. The most frequent mutations were IVS12nt1g>a (16.7%) and R408W, P281L and L48S (all together 11.1%). As expected, compound heterozygosity was the usual finding; homozygosity was found only in two patients with R158Q and IVS2nt5g>c mutations. The V230I mutation was reported for the first time in Italy. We found six previously described polymorphisms (V245V, IVS4nt47c>t, IVS2nt19t>c, IVS3nt-22c>t, IVS5nt-54a>g, and E280>Q280). To our knowledge, four genotypes were not previously described: R158Q/V230I present in one patient with classical PKU; and L48S/R408Q, A403V/IVS2nt-13t>g, and G272X/V230I present in patients showing HPA phenotype. Most of the mutations were located in the exons 12 and 7 and in exon/intron 2 (83.3% detection of total mutations in PKU or HPA patients of Northeastern Italy). From a practical viewpoint, the genetic analysis of blood-spots collected on Guthrie cards for neonatal screening for PKU could be a simple method to establish the genotype of neonates. Consequently, the genotype/phenotype correlation could lead to a more accurate diagnosis and prognosis for families.  相似文献   

15.
Phenylketonuria mutations in Germany   总被引:9,自引:0,他引:9  
We report the spectrum of mutations and associated modified haplotypes in patients with phenylketonuria living in Germany. A total of 546 independent alleles was investigated, including 411 of German and 65 of Turkish descent. Mutations were identified for 535 PKU alleles (98%) and there were 91 different mutations. The most common mutation was R408W on 22% of alleles. Two mutations, IVS12+1G→A and IVS10–11G→A accounted for just under 10% of alleles, whereas the remaining mutations were found at relative frequencies of 6% or less; 43 mutations were observed once only. IVS10–11G→A was the most common mutation (38% of alleles) in the subgroup of patients of Turkish descent. Modified haplotypes were determined from the analysis of four silent mutations, three diallelic restriction fragment length polymorphisms, a variable number of tandem repeats minisatellite and a short tandem repeat microsatellite in the phenylalanine hydroxylase gene, showing that a considerable proportion of mutations must have recurred in independent founders; other mutations may have changed chromosomal haplotype backgrounds by gene conversion. The spectrum of PKU mutations in Germany reflects the history of a heterogenous Central European population living at the crossroads of migration throughout the centuries. Received: 11 January 1999 / Accepted: 11 March 1999  相似文献   

16.
The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g-->a, and Y414C, accounting for 18.7%, 7.8%, and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies < or = 1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment of mutations has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency.  相似文献   

17.
Summary Details are given concerning the phenylketonuria (PKU) mutations R408Q and F299C. Both mutations were identified among 47 PKU patients, derived from the Norwegian PKU registry. A novel PKU mutation (R408Q) was identified, by single-strand conformation polymorphism analysis, on six out of eight mutant haplotype 12 chromosomes and on none of the other PKU chromosomes. The F299C mutation occurred exclusively on mutant haplotype 8, and was the only mutation associated with this haplotype (on six chromosomes). One patient homozygous for each mutation was found. The patient homozygous for F299C manifested severe PKU, whereas the R408Q homozygote exhibited a mild PKU variant. Pedigree analysis of these families has not, so far, revealed consanguinity. Information on the place of birth of the relevant grandparents of the PKU patients with these mutations suggests that each of these mutations in Norway has originated from a common gene source.  相似文献   

18.
Phenylketonuria (PKU) and mild hyperphenylalaninemia (MHP) are allelic disorders caused by mutations in the gene encoding phenylalanine hydroxylase (PAH). In this study, a total of 218 independent PAH chromosomes (109 unrelated patients with PKU residing in Lithuania) were investigated. All 13 exons of the PAH gene of all PKU probands were scanned for DNA alterations by denaturing gradient gel electrophoresis (DGGE). In the cases of a specific DGGE pattern recognized, mutations were identified by direct fluorescent automated sequencing or by restriction enzyme digestion analysis of relevant exons. Twenty-five different PAH gene mutations were identified in Lithuania. We estimated a connection between individual PAH locus mutations and biochemical and metabolic phenotypes in patients in whom the mutant allele acts on its own, i.e., in functionally hemizygous patients and using the assigned value (AV) method to determine the severity of both common and rare mutant alleles, as well as to check a model to predict the combined phenotypic effect of two mutant PAH alleles. The text was submitted authors English.  相似文献   

19.
Characterization of the molecular basis of phenylketonuria (PKU) in Syria has been accomplished through the analysis of 78 unrelated chromosomes from 39 Syrian patients with PKU. Phenylalanine hydroxylase (PAH) gene mutations have been analyzed by using molecular detection methods based on the restriction fragment length polymorphism (RFLP), artificial constructed restriction sites (ACRS) PCR and direct DNA sequencing. 56.4% of the patients had cPKU. A mutation detection rate of 79.49% was achieved and sixteen different mutations were found: missense 56.25%, splice site 37.5%, and frameshift 6.25%. The predominant mutation in this population sample was p.R261Q G>A, p.F55>Lfs and p.R243Q G>A. No mutation in six PKU patients was observed. In 57.9% of patient genotypes, the metabolic phenotype could be predicted. The identification of the mutations in the PAH gene and the genotype–phenotype correlation should facilitate the evaluation of metabolic phenotypes, diagnosis, implementation of optimal dietary therapy, and determination of prognosis in the patients and genetic counseling for the patient's relatives.  相似文献   

20.
Nonphenylketonuria hyperphenylalaninemia (non-PKU HPA) is defined as phenylalanine hydroxylase (PAH) deficiency with blood phenylalanine levels below 600 mumol/liter (i.e., within the therapeutic range) on a normal dietary intake. Haplotype analysis at the PAH locus was performed in 17 Danish families with non-PKU HPA, revealing compound heterozygosity in all individuals. By allele-specific oligonucleotide (ASO) probing for common PKU mutations we found 12 of 17 non-PKU HPA children with a PKU allele on one chromosome. To identify molecular lesions in the second allele, individual exons were amplified by polymerase chain reaction and screened for mutations by single-strand conformation polymorphism. Two new missense mutations were identified. Three children had inherited a G-to-A transition at codon 415 in exon 12 of the PAH gene, resulting in the substitution of asparagine for aspartate, whereas one child possessed an A-to-G transition at codon 306 in exon 9, causing the replacement of an isoleucine by a valine in the enzyme. It is further demonstrated that the identified mutations have less impact on the heterozygote's ability to hydroxylate phenylalanine to tyrosine compared to the parents carrying a PKU mutation. The combined effect on PAH activity explains the non-PKU HPA phenotype of the child. The present observations that PKU mutations in combination with other mutations result in the non-PKU HPA phenotype and that particular mutation-restriction fragment length polymorphism haplotype combinations are associated with this phenotype offer the possibility of distinguishing PKU patients from non-PKU individuals by means of molecular analysis of the hyperphenylalaninemic neonate and, consequently, of determining whether a newborn child requires dietary treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号