首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
An efficient route from D-ribono-gamma-lactone to gem-diamine 1-N-iminosugars of L-fucose-type, a new family of glycosidase inhibitor, has been developed in a formation of a gem-diamine 1-N-iminopyranose ring by the Mitsunobu reaction of an aminal as a key step. The analogues were proved to be the extremely potent inhibitors against alpha-L-fucosidase (IC50 approximately 3 ng mL(-1), Ki approximately 5 x 10(-9) M). The present study has shown that a cyclic methanediamine generated in media affects glycosidases as a real active-form of the gem-diamine 1-N-iminosugars of L-fucose-type.  相似文献   

2.
A variety of gem-diamine 1-N-iminosugars related to L-iduronic acid were synthesized and evaluated as inhibitors of heparan sulfate uronyl 2-O-sulfotransferase using an in vitro enzyme assay. Two iminosugars containing guanidino groups acted as potent in vitro inhibitors of the enzyme.  相似文献   

3.
Karthikeyan S  Zhou Q  Zhao Z  Kao CL  Tao Z  Robinson H  Liu HW  Zhang H 《Biochemistry》2004,43(42):13328-13339
1-Aminocyclopropane-1-carboxylate (ACC) deaminase is a pyridoxal 5'-phosphate (PLP) dependent enzyme catalyzing the opening of the cyclopropane ring of ACC to give alpha-ketobutyric acid and ammonia as the products. This ring cleavage reaction is unusual because the substrate, ACC, contains no abstractable alpha-proton and the carboxyl group is retained in the product. How the reaction is initiated to generate an alpha-carbanionic intermediate, which is the common entry for most PLP-dependent reactions, is not obvious. To gain insight into this unusual ring-opening reaction, we have solved the crystal structures of ACC deaminase from Pseudomonas sp. ACP in complex with substrate ACC, an inhibitor, 1-aminocyclopropane-1-phosphonate (ACP), the product alpha-ketobutyrate, and two d-amino acids. Several notable observations of these structural studies include the following: (1) a typically elusive gem-diamine intermediate is trapped in the enzyme complex with ACC or ACP; (2) Tyr294 is in close proximity (3.0 A) to the pro-S methylene carbon of ACC in the gem-diamine complexes, implicating a direct role of this residue in the ring-opening reaction; (3) Tyr294 may also be responsible for the abstraction of the alpha-proton from d-amino acids, a prelude to the subsequent deamination reaction; (4) the steric hindrance precludes accessibility of active site functional groups to the l-amino acid substrates and may account for the stereospecificity of this enzyme toward d-amino acids. These structural data provide evidence favoring a mechanism in which the ring cleavage is induced by a nucleophilic attack at the pro-S beta-methylene carbon of ACC, with Tyr294 as the nucleophile. However, these observations are also consistent with an alternative mechanistic possibility in which the ring opening is acid-catalyzed and may be facilitated by charge relay through PLP, where Tyr294 functions as a general acid. The results of mutagenesis studies corroborated the assigned critical role for Tyr294 in the catalysis.  相似文献   

4.
New six- and seven-membered 1-N-iminosugars were prepared from d-glucose by the stereoselective Michael addition of nitromethane to d-glucose derived α,β-unsaturated ester A followed by one pot reduction of nitro/ester functionality and subsequent amine protection to get N-Cbz protected aminol 6. Hydrolysis of 1,2-acetonide and reductive aminocyclization gave seven membered 1-N-iminosugar 5b. While, hydrolysis of 1,2-acetonide followed by NaIO(4) oxidative cleavage and hydrogenation using 10% Pd(OH)(2)/C, H(2) gave six membered 1-N-iminosugar 4a; the hydrogenation using 10% Pd/C-H(2) however, gave N-methyl substituted 1-N-iminosugar 4b. The hydrochloride salts of 4a/4b and 5b were found to be specific α-galactosidase and moderate α-glucosidae inhibitors, respectively, in micro molar range.  相似文献   

5.
We have examined the binding of oxindolyl-L-alanine, (3R)-2,3-dihydro-L-tryptophan, L-homophenylalanine, and N1-methyl-L-tryptophan to tryptophan indole-lyase (tryptophanase) from Escherichia coli by using rapid-scanning and single-wavelength stopped-flow kinetic techniques. Rate constants for the reactions were determined by fitting the concentration dependencies of relaxations to either linear (pseudo-first-order) or hyperbolic (rapid second-order followed by slow first-order) equations. The reaction with oxindolyl-L-alanine forms a quinonoid intermediate that exhibits a strong peak at 506 nm. This species is formed more rapidly than with the other analogues (84.5 s-1) and is reprotonated very slowly (0.2 s-1). Reaction with L-homophenylalanine also forms a quinonoid intermediate with a strong peak at 508 nm, but the rate constant for its formation is slower (6.9 s-1). The reaction with L-homophenylalanine exhibits a transient intermediate absorbing at about 340 nm that decays at the same rate as the quinonoid peak forms and that may be a gem-diamine. Tryptophan indole-lyase reacts with (3R)-2,3-dihydro-L-tryptophan much more slowly to form a moderately intense quinonoid peak at 510 nm, and a transient intermediate absorbing at about 350 nm is also formed. The species formed in the reaction of N1-methyl-L-tryptophan exhibits a peak at 425 nm and a very weak quinonoid absorption peak at 506 nm, which is formed at less than 4 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
M Roy  E W Miles  R S Phillips  M F Dunn 《Biochemistry》1988,27(23):8661-8669
The reactions of 2,3-dihydro-L-tryptophan (DHT) and oxindolyl-L-alanine (OXA) with tryptophan synthase have been investigated by rapid-scanning stopped-flow (RSSF) spectroscopy and by the concentration dependence of rates measured by single-wavelength stopped-flow (SWSF) spectroscopy. The RSSF spectral changes for DHT and OXA show the disappearance of the internal aldimine (lambda max 412 nm), the formation and decay of intermediates absorbing less than or equal to 340 nm, and the appearance of the quinonoid (lambda max 492 and 480 nm, respectively). Rate constants determined by SWSF were either well resolved (i.e., k1[DHT], k-1 greater than k2, k-2 greater than k3, k-3) or indicative of a tightly coupled system (i.e., k1[OXA], k-1 greater than or equal to k2, k-2 greater than k3, k-3). The RSSF spectral changes and SWSF kinetic studies together with computer simulations of the kinetic time courses are consistent with a mechanism that includes formation of a bleached species. Detection of these shorter wavelength species in the reactions of OXA and DHT indicates that substrate analogues with tetrahedral geometry at C-3 induce new protein-substrate interactions that result in the accumulation of species not previously detected in the tryptophan synthase system. The bleached species with lambda max less than or equal to 340 nm are proposed as the gem-diamine intermediates.  相似文献   

7.
The biosynthesis of histidine is a central metabolic process in organisms ranging from bacteria to yeast and plants. The seventh step in the synthesis of histidine within eubacteria is carried out by a pyridoxal-5'-phosphate (PLP)-dependent l-histidinol phosphate aminotransferase (HisC, EC 2.6.1.9). Here, we report the crystal structure of l-histidinol phosphate aminotransferase from Escherichia coli, as a complex with pyridoxamine-5'-phosphate (PMP) at 1.5 A resolution, as the internal aldimine with PLP, and in a covalent, tetrahedral complex consisting of PLP and l-histidinol phosphate attached to Lys214, both at 2.2 A resolution. This covalent complex resembles, in structural terms, the gem-diamine intermediate that is formed transiently during conversion of the internal to external aldimine.HisC is a dimeric enzyme with a mass of approximately 80 kDa. Like most PLP-dependent enzymes, each HisC monomer consists of two domains, a larger PLP-binding domain having an alpha/beta/alpha topology, and a smaller domain. An N-terminal arm contributes to the dimerization of the two monomers. The PLP-binding domain of HisC shows weak sequence similarity, but significant structural similarity with the PLP-binding domains of a number of PLP-dependent enzymes. Residues that interact with the PLP cofactor, including Tyr55, Asn157, Asp184, Tyr187, Ser213, Lys214 and Arg222, are conserved in the family of aspartate, tyrosine and histidinol phosphate aminotransferases. The imidazole ring of l-histidinol phosphate is bound, in part, through a hydrogen bond with Tyr110, a residue that is substituted by Phe in the broad substrate specific HisC enzymes from Zymomonas mobilis and Bacillus subtilis.Comparison of the structures of the HisC internal aldimine, the PMP complex and the HisC l-histidinol phosphate complex reveal minimal changes in protein or ligand structure. Proton transfer, required for conversion of the gem-diamine to the external aldimine, does not appear to be limited by the distance between substrate and lysine amino groups. We propose that the tetrahedral complex has resulted from non-productive binding of l-histidinol phosphate soaked into the HisC crystals, resulting in its inability to be converted to the external aldimine at the HisC active site.  相似文献   

8.
R S Phillips 《Biochemistry》1991,30(24):5927-5934
The effects of indole and analogues on the reaction of Escherichia coli tryptophan indole-lyase (tryptophanase) with amino acid substrates and quasisubstrates have been studied by rapid-scanning and single-wavelength stopped-flow spectrophotometry. Indole binds rapidly (within the dead time of the stopped-flow instrument) to both the external aldimine and quinonoid complexes with L-alanine, and the absorbance of the quinonoid intermediate decreases in a subsequent slow relaxation. Indoline binds preferentially to the external aldimine complex with L-alanine, while benzimidazole binds selectively to the quinonoid complex of L-alanine. Indole and indoline do not significantly affect the spectrum of the quinonoid intermediates formed in the reaction of the enzyme with S-alkyl-L-cysteines, but benzimidazole causes a rapid decrease in the quinonoid peak at 512 nm and the appearance of a new peak at 345 nm. Benzimidazole also causes a rapid decrease in the quinonoid peak at 505 nm formed in the reaction with L-tryptophan and the appearance of a new absorbance peak at 345 nm. Furthermore, addition of benzimidazole to solutions of enzyme, potassium pyruvate, and ammonium chloride results in the formation of a similar absorption peak at 340 nm. This complex reacts rapidly with indole to form a quinonoid intermediate very similar to that formed from L-tryptophan. This new intermediate is formed faster than catalytic turnover (kcat = 6.8 s-1) and may be an alpha-aminoacrylate intermediate bound as a gem-diamine.  相似文献   

9.
Jhee KH  Niks D  McPhie P  Dunn MF  Miles EW 《Biochemistry》2001,40(36):10873-10880
Our studies of the reaction mechanism of cystathionine beta-synthase from Saccharomyces cerevisiae (yeast) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme that forms a series of intermediates in the reaction of L-serine and L-homocysteine to form L-cystathionine. To characterize these reaction intermediates, we have carried out rapid-scanning stopped-flow and single-wavelength stopped-flow kinetic measurements under pre-steady-state conditions, as well as circular dichroism and fluorescence spectroscopy under steady-state conditions. We find that the gem-diamine and external aldimine of aminoacrylate are the primary intermediates in the forward half-reaction with L-serine and that the external aldimine of aminoacrylate or its complex with L-homocysteine is the primary intermediate in the reverse half-reaction with L-cystathionine. The second forward half-reaction of aminoacrylate with L-homocysteine is rapid. No primary kinetic isotope effect was obtained in the forward half-reaction with L-serine. The results provide evidence (1) that the formation of the external aldimine of L-serine is faster than the formation of the aminoacrylate intermediate, (2) that aminoacrylate is formed by the concerted removal of the alpha-proton and the hydroxyl group of L-serine, and (3) that the rate of the overall reaction is rate-limited by the conversion of aminoacrylate to L-cystathionine. We compare our results with cystathionine beta-synthase with those of related investigations of tryptophan synthase and O-acetylserine sulfhydrylase.  相似文献   

10.
Serine hydroxymethyltransferase (SHMT) belongs to the alpha-family of pyridoxal 5'-phosphate-dependent enzymes and catalyzes the reversible conversion of L-Ser and tetrahydrofolate to Gly and 5,10-methylene tetrahydrofolate. 5,10-Methylene tetrahydrofolate serves as a source of one-carbon fragment in many biological processes. SHMT also catalyzes the tetrahydrofolate-independent conversion of L-allo-Thr to Gly and acetaldehyde. The crystal structure of Bacillus stearothermophilus SHMT (bsSHMT) suggested that E53 interacts with the substrate, L-Ser and tetrahydrofolate. To elucidate the role of E53, it was mutated to Q and structural and biochemical studies were carried out with the mutant enzyme. The internal aldimine structure of E53QbsSHMT was similar to that of the wild-type enzyme, except for significant changes at Q53, Y60 and Y61. The carboxyl of Gly and side chain of L-Ser were in two conformations in the respective external aldimine structures. The mutant enzyme was completely inactive for tetrahydrofolate-dependent cleavage of L-Ser, whereas there was a 1.5-fold increase in the rate of tetrahydrofolate-independent reaction with L-allo-Thr. The results obtained from these studies suggest that E53 plays an essential role in tetrahydrofolate/5-formyl tetrahydrofolate binding and in the proper positioning of Cbeta of L-Ser for direct attack by N5 of tetrahydrofolate. Most interestingly, the structure of the complex obtained by cocrystallization of E53QbsSHMT with Gly and 5-formyl tetrahydrofolate revealed the gem-diamine form of pyridoxal 5'-phosphate bound to Gly and active site Lys. However, density for 5-formyl tetrahydrofolate was not observed. Gly carboxylate was in a single conformation, whereas pyridoxal 5'-phosphate had two distinct conformations. The differences between the structures of this complex and Gly external aldimine suggest that the changes induced by initial binding of 5-formyl tetrahydrofolate are retained even though 5-formyl tetrahydrofolate is absent in the final structure. Spectral studies carried out with this mutant enzyme also suggest that 5-formyl tetrahydrofolate binds to the E53QbsSHMT-Gly complex forming a quinonoid intermediate and falls off within 4 h of dialysis, leaving behind the mutant enzyme in the gem-diamine form. This is the first report to provide direct evidence for enzyme memory based on the crystal structure of enzyme complexes.  相似文献   

11.
Asn185 is an invariant residue in all known sequences of TPL and of closely related tryptophanase and it may be aligned with the Asn194 in aspartate aminotransferase. According to X-ray data, in the holoenzyme and in the Michaelis complex Asn185 does not interact with the cofactor pyridoxal 5'-phosphate, but in the external aldimine a conformational change occurs which is accompanied by formation of a hydrogen bond between Asn185 and the oxygen atom in position 3 of the cofactor. The substitution of Asn185 in TPL by alanine results in a mutant N185A TPL of moderate residual activity (2%) with respect to adequate substrates, L-tyrosine and 3-fluoro-L-tyrosine. The affinities of the mutant enzyme for various amino acid substrates and inhibitors, studied by both steady-state and rapid kinetic techniques, were lower than for the wild-type TPL. This effect mainly results from destabilization of the quinonoid intermediate, and it is therefore concluded that the hydrogen bond between Asn185 and the oxygen at the C-3 position of the cofactor is maintained in the quinonoid intermediate. The relative destabilization of the quinonoid intermediate and external aldimine leads to the formation of large amounts of gem-diamine in reactions of N185A TPL with 3-fluoro-L-tyrosine and L-phenylalanine. For the reaction with 3-fluoro-L-tyrosine it was first possible to determine kinetic parameters of gem-diamine formation by the stopped-flow method. For the reactions of N185A TPL with substrates bearing good leaving groups the observed values of k(cat) could be accounted for by taking into consideration two effects: the decrease in the quinonoid content under steady-state conditions and the increase in the quinonoid reactivity in a beta-elimination reaction. Both effects are due to destabilization of the quinonoid and they counterbalance each other. Multiple kinetic isotope effect studies on the reactions of N185A TPL with suitable substrates, L-tyrosine and 3-fluoro-L-tyrosine, show that the principal mechanism of catalysis, suggested previously for the wild-type enzyme, does not change. In the framework of this mechanism the observed considerable decrease in k(cat) values for reactions of N185A TPL with L-tyrosine and 3-fluoro-L-tyrosine may be ascribed to participation of Asn185 in additional stabilization of the keto quinonoid intermediate.  相似文献   

12.
Thibodeaux CJ  Liu HW 《Biochemistry》2011,50(11):1950-1962
1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that cleaves the cyclopropane ring of ACC, to give α-ketobutyric acid and ammonia as products. The cleavage of the C(α)-C(β) bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pK(a) of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC to initiate the aldimine exchange reaction between ACC and the PLP coenzyme and also likely helps to activate Tyr294 for a role as a nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect (KIE), proton inventory, and (13)C KIE studies of the wild type enzyme suggest that the C(α)-C(β) bond cleavage step in the chemical mechanism is at least partially rate-limiting under k(cat)/K(m) conditions and is likely preceded in the mechanism by a partially rate-limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294.  相似文献   

13.
Ornithine decarboxylase (ODC) is an obligate homodimer that catalyzes the pyridoxal 5'-phosphate-dependent decarboxylation of l-ornithine to putrescine, a vital step in polyamine biosynthesis. A previous mutagenic analysis of the ODC dimer interface identified several residues that were distant from the active site yet had a greater impact on catalytic activity than on dimer stability [Myers, D. P., et al. (2001) Biochemistry 40, 13230-13236]. To better understand the basis of this phenomenon, the structure of the Trypanosoma brucei ODC mutant K294A was determined to 2.15 A resolution in complex with the substrate analogue d-ornithine. This residue is distant from the reactive center (>10 A from the PLP Schiff base), and its mutation reduced catalytic efficiency by 3 kcal/mol. The X-ray structure demonstrates that the mutation increases the disorder of residues Leu-166-Ala-172 (Lys-169 loop), which normally form interactions with Lys-294 across the dimer interface. In turn, the Lys-169 loop forms interactions with the active site, suggesting that the reduced catalytic efficiency is mediated by the decreased stability of this loop. The extent of disorder varies in the four Lys-169 loops in the asymmetric unit, suggesting that the mutation has led to an increase in the population of inactive conformations. The structure also reveals that the mutation has affected the nature of the ligand-bound species. Each of the four active sites contains unusual ligands. The electron density suggests one active site contains a gem-diamine intermediate with d-ornithine; the second has density consistent with a tetrahedral adduct with glycine, and the remaining two contain tetrahedral adducts of PLP, Lys-69, and water (or hydroxide). These data also suggest that the structure is less constrained in the mutant enzyme. The observation of a gem-diamine intermediate provides insight into the conformational changes that occur during the ODC catalytic cycle.  相似文献   

14.
Wright SK  Rishavy MA  Cleland WW 《Biochemistry》2003,42(27):8369-8376
Deuterium isotope effects at C2 of aspartate and heavy atom isotope effects at C2, C3, and the amino group of aspartate were determined for the reaction of the lysine-258 to alanine mutant of Escherichia coli rescued with exogenous ammonia. We were able to calculate an (15)N intrinsic isotope effect of 1.034. The intrinsic (13)C isotope effect at C3 is 1.0060, and the (13)C isotope effect at C2 is 1.0016. These isotope effects reveal that collapse of the carbinolamine (or gem-diamine) to give the final product is the rate-determining step in this system. Furthermore, these results indicate that lysine-258 is critical to the catalysis of the final breakdown to give product, and in fact this step is more strongly affected by mutation of lysine-258 than the deprotonation of the external aldimine.  相似文献   

15.
The binding of substrates and inhibitors to wild-type Proteus vulgaris tryptophan indole-lyase and to wild type and Y71F Citrobacter freundii tyrosine phenol-lyase was investigated in the crystalline state by polarized absorption microspectrophotometry. Oxindolyl-lalanine binds to tryptophan indole-lyase crystals to accumulate predominantly a stable quinonoid intermediate absorbing at 502 nm with a dissociation constant of 35 microm, approximately 10-fold higher than that in solution. l-Trp or l-Ser react with tryptophan indole-lyase crystals to give, as in solution, a mixture of external aldimine and quinonoid intermediates and gem-diamine and external aldimine intermediates, respectively. Different from previous solution studies (Phillips, R. S., Sundararju, B., & Faleev, N. G. (2000) J. Am. Chem. Soc. 122, 1008-1114), the reaction of benzimidazole and l-Trp or l-Ser with tryptophan indole-lyase crystals does not result in the formation of an alpha-aminoacrylate intermediate, suggesting that the crystal lattice might prevent a ligand-induced conformational change associated with this catalytic step. Wild-type tyrosine phenol-lyase crystals bind l-Met and l-Phe to form mixtures of external aldimine and quinonoid intermediates as in solution. A stable quinonoid intermediate with lambda(max) at 502 nm is accumulated in the reaction of crystals of Y71F tyrosine phenol-lyase, an inactive mutant, with 3-F-l-Tyr with a dissociation constant of 1 mm, approximately 10-fold higher than that in solution. The stability exhibited by the quinonoid intermediates formed both by wild-type tryptophan indole-lyase and by wild type and Y71F tyrosine phenol-lyase crystals demonstrates that they are suitable for structural determination by x-ray crystallography, thus allowing the elucidation of a key species of pyridoxal 5'-phosphate-dependent enzyme catalysis.  相似文献   

16.
繁缕和无瓣繁缕六个居群的数值分析   总被引:6,自引:0,他引:6  
对繁缕(Stellaria media)和无瓣繁缕(S.apetala)的6个居群的57个性状进行Q-聚类和R-聚类的研究。结果表明:(1)Q-聚类中,用一条结合线,可以把繁缕的4个居群聚为一类,无瓣繁缕的2个居群聚为一类。这一结果支持肥繁缕和无瓣繁缕划分为两个物种;(2)R-聚类中,发现了呈现完全正相关、极大正相关和极大负相关的性状,并根据R-聚类的结果,运用一条适当的结合线,把繁缕和无瓣繁缕的57个性状划为5个类群,并分析了各性状的分类学意义。  相似文献   

17.
The cystic fibrosis ciliary inhibitor (CFCI) has been fractionated from plasma of cystic fibrosis (CF) homozygotes and from the media of cultured fibroblasts derived from CF homozygotes. Plasma and fibroblast media from normal controls have been fractionated in an identical manner. Fractions from plasma and fibroblast culture media that demonstrate ciliary inhibitory activity contain several proteins in a molecular weight range of approximately 5,000-11,000. These proteins have been partially characterized by immunochemical analysis with antisera to 33 human serum proteins. Immunological determinants of albumin, C3 (but not C3a), C4, C5, alpha1-lipoprotein, beta-lipoprotein, beta2-microglobulin and immunoglobulin light chains have been detected by hemagglutination in fractions of CF plasma that inhibited ciliary activity and in analogous fractions from normal sera. None of the proteins were detected in media of cultured fibroblasts from either genotype. Since the same proteins and protein fragments were identified in both CF and normal plasma fractions, and were not detected in CF fibroblast media, it appears that none of these proteins can be identified as the CFCI. Identification of these proteins will permit further purification of the CFCI by immunochemical methods.  相似文献   

18.
19.
The oxidation mechanism of caffeic acid (CAF) has been studied by means of cyclic voltammetry with the plastic formed carbon or glassy carbon electrode. CAF gives a well-developed two-electron reversible wave in acidic media, whereas it shows an irreversible behavior, i.e., a decrease of the rereduction peak, in less acidic media, suggesting that the oxidation of CAF follows an irreversible chemical reaction(s). Digital simulation analyses based on different oxidation mechanisms have been performed for the voltammograms obtained with the GC electrode in 1:1 (v/v) water:ethanol solutions. The results clearly show that the seeming two-electron oxidation of CAF occurs stepwise via one-electron processes, each of which follows an irreversible chemical reaction. It has also been suggested that the semiquinone radical as an intermediate of the one-electron oxidation should play an important role in the oxidation reaction. Evaluations of the rate constants for the chemical reactions have further suggested that the chemical reactions are dimerization reactions.  相似文献   

20.
Immunosensor systems have been developed for the rapid determination of 1-naphthol. In this work, the comparison of performance of immunosensors working in aqueous and organic media was done. Direct, indirect and capture formats were studied. Immunoreagents were immobilized on controlled pore glass (CPG), hidroxysuccinimide agarose gel or on azlactone Protein A/G supports. The Protein A/G-based sensor showed the best performance. In aqueous media, a LOD of 16.2 microg l(-1) and a DR of 33.7-586.6 microg l(-1) were achieved employing Tween 20 at a concentration ranging from 0.01 to 0.05% v/v. Maximum sensitivity was reached with 0.025% of surfactant. Binary mixtures of methanol or acetonitrile with aqueous buffer and ternary mixtures of methanol/isopropanol or ethyl acetate/methanol with the same buffer were studied as organic media. The mixture 50% MeOH-50% 20 mM sodium phosphate, pH 8, with 0.05% (v/v) Tween 20 resulted to be the best. A detection limit of 12.0 microg l(-1) and a dynamic range of 53.6-17,756.0 microg l(-1) were reached. The recycling of Protein A/G-based sensor working in this media was about 300 assays. Preconcentration factors around 250 were achieved using methanol as extracting solvent. It has been demonstrated that the technique can be successful in carrying out the analysis of low solubility in water analytes, such as 1-naphthol. The sensors developed can use higher concentrations of organic solvent (up to 50% methanol) compared to ELISA. On the other hand, the advantage of preconcentration can also be taken for the use of the same procedure as recommended for standard sample treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号