首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism for oxytocin's (OT) stimulation of PGF2alpha secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca2+ and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca2+ by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF2alpha release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF2alpha secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF2alpha secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF2alpha release. These results are consistent with the hypothesis that OT mobilizes Ca2+ to activate a Ca2+-dependent PKC pathway to promote PGF2alpha secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

2.
Luminal epithelial cells of porcine endometrium are unresponsive to oxytocin (OT) in vitro although they express the greatest quantity of OT and receptors for OT in vivo. Therefore, the objective of this study was to determine if oxytocin acted in an autocrine manner on luminal epithelial cells to stimulate prostaglandin (PG)F(2alpha) secretion. Treatment of endometrial explants or enriched luminal epithelial cells with OT antagonist L-366,948 decreased (P < 0.05) basal secretion of PGF(2alpha). Oxytocin increased (P < 0.01) PGF(2alpha) secretion from luminal epithelial cells that were pretreated with 1:5000 or 1:500 OT antiserum for 3 h to immunoneutralize endogenously secreted OT. However, OT only increased (P < 0.05) PGF(2alpha) secretion from glandular epithelial cells when pretreated with 1:500 OT antiserum. Pretreatment with OT antiserum did not alter the ability of OT to induce PGF(2alpha) secretion from stromal cells. Medium conditioned by culture of luminal epithelial cells stimulated (P < 0.05) phospholipase C activity in stromal cells, indicative of the presence of bioactive OT. Oxytocin was secreted by luminal epithelial cells and 33% was released from the apical surface. These results indicate that luminal epithelial cells secrete OT that acts in an autocrine and/or paracrine manner in pig endometrium to stimulate PGF(2alpha) secretion.  相似文献   

3.
In swine, endometrial prostaglandin F(2alpha) (PGF(2alpha)) is the luteolysin. The capacity of luminal epithelial cells isolated from the endometrium of day 16 cyclic pigs, to secrete PGF(2alpha)500 Omega/cm(2)), they were treated on the apical, basal or both surfaces with 0 or 100 nM oxytocin (OT) in Experiment 1 or phorbol 12-myristate 13-acetate (PMA) in Experiment 2. In the absence of OT or PMA, PGF(2alpha) secretion occurred primarily from the basal surface and was approximately 12-fold greater (P < 0.001) than from the apical surface. Treatment with OT did not stimulate PGF(2alpha) secretion from either surface regardless of which surface was treated. In contrast, PMA increased PGF(2alpha) secretion from both surfaces. Treatment of the apical surface or both surfaces with PMA increased (P < 0.001) PGF(2alpha) secretion similarly from both surfaces. Treatment of only the basal surface with PMA increased (P < 0.01) PGF(2alpha) secretion from both surfaces, but tended (P = 0. 06) to increase its secretion from the basal surface more than from the apical surface. These results indicated that PGF(2alpha) secretion by luminal epithelial cells obtained from cyclic pigs occurs primarily toward a basal direction and is not stimulated by oxytocin. Activation of protein kinase C stimulates directional secretion of PGF(2alpha) from both surfaces of the epithelial cells.  相似文献   

4.
Progesterone (P4) was found to interfere directly with the interaction of oxytocin (OT) with its own receptor in bovine endometrium. The aim of these studies was to investigate whether other steroids have a similar effect. Endometrial slices and epithelial endometrial cells from days 14 to 18 of the estrous cycle were used. Progesterone (P4), pregnenolone (P5), 17beta-hydroxyprogesterone (17-OHP4), the P4 receptor antagonist (aP4), and testosterone (T4) did not affect (P > 0.01) basal secretion of PGE2 and PGF 2alpha during 4h of incubation but all steroids inhibited (P < 0.05) OT-stimulated PGF2alpha secretion both from endometrial slices and from dispersed cells. None of the steroids used affected OT-stimulated PGE2 secretion from the cells (P > 0.01). In the next experiment it was studied whether P5, 17-OHP4 and P4 pretreatment for 30min modifies intracellular mobilization of Ca(2+) in response to OT. Oxytocin induced a rapid increase in intracellular Ca(2+)concentrations within 15s, while cells pretreated with steroids this increase occurred later. The total amount of intracellular Ca(2+)concentrations was lower (P < 0.05) in cells preincubated with steroids compared to controls. We conclude that steroids and aP4 are able to suppress OT-stimulated endometrial PGE2 and PGF2alpha secretion via a non-genomic pathway.  相似文献   

5.
The pig conceptus and endometrium possess the ability to convert estrogens into catecholestrogens and catecholestrogens into methoxyestrogens. Experiments were carried out to evaluate the effect of catecholestrogens, methoxyestrogens and progesterone on the secretion of prostaglandin (PG) E and F2 alpha by porcine endometrial glandular and stromal cells in vitro. Both 2-hydroxyestradiol (2-OH-E2, 0-20 microM) and 4-hydroxyestradiol (4-OH-E2, 0-20 microM) increased (P less than .05) PGE and PGF2 alpha secretion by stromal cells in a dose response manner. Two-hydroxyestradiol tended (P less than .1) to decrease PGF2 alpha production by glandular cells. Two-methoxyestradiol (20 microM) suppressed (P less than .05) PGF2 alpha secretion by glandular and stromal cells. Four-methoxyestradiol (20 microM) stimulated (P less than .05) PGE production and PGE:PGF2 alpha ratio. Progesterone (.1 microM) suppressed (P less than .05) PG secretion in both cell types. We conclude that catecholestrogens, methoxyestrogens, and progesterone may participate in the establishment of pregnancy by modulating PG production in the endometrium.  相似文献   

6.
It is assumed that exposure of endometrium to spontaneously secreted luteal hormones stimulates PGF2 alpha secretion and modifies oxytocin (OT) influence on the bovine uterus. At first, the time-dependent effect of endogenous luteal products on endometrial PGF2 alpha secretion was examined. Endometrial strips (100 mg) from slaughtered heifers (Days 11 to 17 of the cycle) were incubated alone or with luteal cells (1 x 10(5) cells/mL). The highest PGF2 alpha secretion by the endometrium under influence of hormones secreted from luteal cells was observed after 12 h of incubation compared with the control (P < 0.001). Then, endometrium (Days 11 to 17) was incubated with luteal cells and concomitantly with antagonists of P4 and OT. The P4 antagonist prevented the stimulatory effect of endogenous luteal hormones on PGF2 alpha secretion (P < 0.05), but the OT antagonist did not. Further, direct effects of exogenous P4, OT and estradiol (E2) on endometrial PGF2 alpha secretion (Days 11 to 17) were examined. Both OT and P4 increased PGF2 alpha secretion (P < 0.05); E2 alone had no effect on PGF2 alpha secretion, but it amplified the P4 effect (P < 0.05). Finally, we studied the effect of endogenous luteal products on OT-stimulated PGF2 alpha secretion from endometrium. When endometrium (Days 11 to 17) was incubated without luteal cells, OT stimulated PGF2 alpha secretion (P < 0.001), whereas incubation of endometrium with luteal cells abolished the stimulatory effect of OT on PGF2 alpha secretion (P < 0.001). These treatments did not affect PGF2 alpha secretion from the endometrium collected on Days 1 to 4. In conclusion, P4 stimulates PGF2 alpha secretion by the endometrium and E2 amplifies this effect. As long as the endometrium is under the influence of P4, ovarian OT does not affect PGF2 alpha secretion.  相似文献   

7.
Z Zhang  D L Davis 《Prostaglandins》1991,42(2):151-162
Prostaglandins (PGs) are believed to play important roles in the establishment of pregnancy. Glandular and stromal cells were isolated from pig endometrium on days 11 through 19 of pregnancy and cultured in the presence of estradiol-17 beta (E2) and progesterone (P4) to determine the effect of day of pregnancy and steroids on the secretion of PGE and PGF2 alpha. Estradiol at concentrations between .01 and 1 microM did not affect PGE and PGF2 alpha secretion into the medium by glandular and stromal cells. Progesterone (.1 microM) suppressed (P less than .001) PGE and PGF2 alpha production from both cell types. Glandular cells secreted more (P less than .01) PGF2 alpha than PGE, whereas stromal cells collected on days 11, 12, 13, and 19 secreted more (P less than .05) PGE than PGF2 alpha. Stromal cells isolated from tissues collected on day 13 of pregnancy produced PGs with higher (P less than .01) PGE:PGF2 alpha ratio than those from tissues harvested on other days of pregnancy. Glandular cells isolated from tissues collected on days 13 and 19 and stromal cells isolated from tissue collected on day 13 of pregnancy secreted more (P less than .05) PGE and PGF2 alpha than cells isolated on other days of pregnancy. We conclude that: 1) P4 has a suppressing effect on PG secretion; 2) endometrial glandular and stromal cells each produce a unique profile of PGs; and 3) endometrial cells harvested on different days of pregnancy secrete different amounts of PGE and PGF2 alpha.  相似文献   

8.
Ovarian originated oxytocin (OT) is involved in several reproductive process, amongst them its role in the regulation/modulation of the estrous cycle in several species has been demonstrated. Although the systemic role of endometrial originated prostaglandins (PGs), especially prostaglandin F(2α) (PGF(2α)), is equivocal in cats, their possible involvement in the local regulation of uterine events during the estrous cycle is uncertain. We examined the spontaneous and LH-stimulated OT production in cultured luteal cells, the spatial and temporal arrangement of OT receptors (OTR) in a cat endometrium and, finally the effects of OT on PG secretion and prostaglandin-endoperoxide synthase (PTGS2) expression in the feline cultured endometrial cells. Uteri together with ovaries were collected from adult domestic cats (n=27) at different stages of the estrous cycle, after routine ovariohysterectomy procedures. The endometrial and luteal cells were separated enzymatically. Luteinizing hormone (LH) augmented OT secretion in cultured luteal cells 2-fold compared with control (P<0.05). Oxytocin receptor was abundantly expressed in different ovarian structure, as well as in uterine tissues collected at early/developing and mid-luteal phase. The secretion of PGF(2α) by endometrial epithelial cells was increased by OT at a dose 10(-7)M (P<0.001). Atosiban (specific OTR blocker) alone did not affect PG secretion but atosiban in combination with OT abolished the stimulating effect of OT on PGF(2α) secretion. Oxytocin augmented PGE(2) secretion at a dose 10(-7)M and 10(-6)M in the endometrial stromal cells (P<0.001). The treatment with atosiban did not abrogated positive effect of OT on PGE(2) production in the stromal cells. Effect of OT on PTGS2 mRNA expression, the rate-limiting enzyme in PG production, was examined by Real Time-PCR and PTGS2 mRNA expression was significantly affected by OT in both epithelial and stromal cell cultures (P<0.01). The present observations have shown that OT is locally produced by the early/developing corpora lutea and that corpora lutea delivered OT may regulate PG secretion in a cat endometrium especially at early- and mid-diestrus, by affecting PTGS2 mRNA expression.  相似文献   

9.
Tumor necrosis factor alpha (TNFalpha) has been shown to be a potent stimulator of prostaglandin (PG) F(2alpha) secretion in the bovine endometrium. The aims of the present study were to determine the cell types in the endometrium (epithelial or stromal cells) responsible for the secretion of PGF(2alpha) in response to TNFalpha, and the intracellular mechanisms of TNFalpha action. Cultured bovine epithelial and stromal cells were exposed to TNFalpha (0.006-6 nM) or oxytocin (100 nM) for 4 h. TNFalpha resulted in a dose-dependent increase of PGF(2alpha) production in the stromal cells (P < 0.001) but not in the epithelial cells. On the other hand, oxytocin stimulated PGF(2alpha) output in the epithelial cells but not in the stromal cells. When the stromal cells were incubated for 24 h with TNFalpha and inhibitors of phospholipase (PL) C or PLA(2), only PLA(2) inhibitor completely stopped the actions of TNFalpha (P < 0.001). When the stromal cells were exposed to TNFalpha and arachidonic acid, the action of TNFalpha was augmented (P < 0.001). When the stromal cells were incubated for 24 h with a nitric oxide (NO) donor (S-NAP), S-NAP stimulated the PGF(2alpha) production dose-dependently. Although an NO synthase (NOS) inhibitor (L-NAME) reduced TNFalpha-stimulated PGF(2alpha) production, an inhibitor of phosphodiesterase augmented the actions of TNFalpha and S-NAP (P < 0. 05). The overall results indicate that the target of TNFalpha for stimulation of PGF(2alpha) production in cattle is the endometrial stromal cells, and that the actions of TNFalpha are mediated via the activation of PLA(2) and arachidonic acid conversion. Moreover, TNFalpha may exert a stimulatory effect on PGF(2alpha) production via the induction of NOS and the subsequent NO-cGMP formation.  相似文献   

10.
It is well established that pituitary adenylate cyclase-activating polypeptide (PACAP) can stimulate catecholamine biosynthesis and secretion in adrenal chromaffin cells. Recent studies from this laboratory demonstrated that PACAP pretreatment inhibits nicotine (NIC)-induced intracellular Ca(2+) transients and catecholamine secretion in porcine adrenal chromaffin cells. Mechanistically, this effect is mediated by protein kinase C (PKC), and based on indirect evidence, is thought to primarily target voltage-gated Ca(2+) channels. The present study used whole-cell patch-clamp analysis to test this possibility more directly in rat chromaffin cells. Consistent with the porcine data, pretreatment with PACAP or with phorbol ester [phorbol myristate acetate (PMA)] significantly suppressed NIC-induced intracellular Ca(2+) transients and catecholamine secretion in rat chromaffin cells. Exposure to PACAP and PMA significantly reduced peak Ca(2+) current in rat cells. The effects of both PACAP and PMA on Ca(2+) current could be blocked by treating cells with the PKC inhibitor staurosporine. Exposure to selective channel blockers demonstrated that rat chromaffin cells contain L-, N- and P/Q-type Ca(2+) channels. PACAP pretreatment significantly reduced Ca(2+) current gated through all three channel subtypes. These data suggest that PACAP can negatively modulate NIC-induced catecholamine secretion in both porcine and rat adrenal chromaffin cells.  相似文献   

11.
Exogenous estradiol (E2) has been shown to elevate PGF2 alpha output by explants of human secretory endometrium and in monolayer cultures of glandular epithelial, but not of stromal cells isolated from endometrium. In this study, PGF2 alpha output was measured in each of these cultures in the presence of E2 and the calcium ionophore A23187, added singly or in combination. The ionophore, known to liberate arachidonic acid (AA) by stimulating phospholipase activity, produced a calcium-dependent increase in PGF2 alpha output in the cultures of epithelial cells, whereas greater than additive effects were obtained with mixtures of E2 and A23187. In contrast, PGF2 alpha levels were not elevated by A23187 in the stromal cell cultures even in medium supplemented with CaCl2 or when E2 was added. A calcium-dependent increase in PGF2 alpha output was also observed in fragments of secretory endometrium incubated with A23187. Effects on PGF2 alpha output by endometrial fragments incubated with E2 and A23187 were essentially additive and intermediate between those of the two component cells types. Arachidonic acid produced similar increases in PGF2 alpha output in the epithelial and stromal cell cultures but only in the epithelial cell cultures was there greater utilization of AA in the presence of E2. When mixtures of E2 and AA were added to the cultures of epithelial cells the increase in PGF2 alpha output was 2.5-fold greater than the sum of the increases elicited by E2 or AA alone. In contrast, no enhancement of the AA effect by E2 was observed in the stromal cell cultures. Extrapolation of these results from cell cultures to intact tissue suggests that the epithelium and not the stroma is the primary target for the effects of E2 on PGF2 alpha output by secretory endometrium. The synergistic actions of E2 and either AA, the obligatory precursor of PGF2 alpha, or A23187, an enhancer of AA release from phospholipid stores, point to a stimulatory effect of E2 on prostaglandin synthase activity.  相似文献   

12.
Ovarian steroids modulate uterine receptivity in domestic species. Luteinizing hormone (LH) stimulates prostaglandin (PG)F(2alpha) release from the porcine endometrium. However, the combined action of LH and steroids on PGs secretion has not yet been studied in pigs. The aim of the present study was to examine the effect of estradiol (E(2)) and progesterone (P(4)) on basal and LH-stimulated PGF(2alpha) and PGE(2) secretion and cyclooxygenase-2 (COX-2) protein expression in porcine endometrial stromal cells obtained on days 12-13 of the estrous cycle. Cells were cultured for 48 h in a medium containing charcoal-stripped newborn calf serum alone or supplemented with 10 nM E(2) and/or 50 nM P(4). Then, the cells were incubated for 6 h in the presence or absence of LH (20 ng/ml). Long exposure of stromal cells to steroids had no effect on PGF(2alpha) secretion, but PGE(2) release increased in the presence of E(2) plus P(4) (p<0.05). Pre-incubation of cells with E(2) plus P(4) resulted in enhanced PGF(2alpha) (p<0.05) and PGE(2) (p<0.001) secretion. Moreover, LH increased PG(2alpha) secretion in control (p<0.05) and E(2)-treated stromal cells (p<0.01). LH tended (p=0.07) to elevate PGE(2) release only in cells pre-exposed to E(2) plus P(4). The expression of COX-2 protein was increased by LH (p<0.05), but not by steroids. These results confirm the stimulatory effect of LH on PGF(2alpha) secretion and COX-2 expression in porcine stromal cells before luteolysis. PG release from porcine endometrium seems to be controlled by ovarian steroids, however only E(2)-treated-treated cells responded to LH.  相似文献   

13.
Uterine endometrium collected from pseudopregnant (PP) and cyclic gilts on day (D) 15 after estrus were perifused in vitro with 10 ug/ml of porcine conceptus secretory proteins (pCSP) or serum proteins (SP) in Krebs ringer bicarbonate (KRB) buffer. In Experiment 1, samples were collected from luminal and myometrial surfaces of endometrium and concentrations of prostaglandin F2 alpha (PGF) determined by radioimmunoassay (RIA). Secretion of PGF by endometrium from cyclic gilts was stimulated (P less than .05) by pCSP. In Experiment 2, endometrium from D 14 cyclic and PP gilts was perifused and concentrations of PGF and prostaglandin E2 (PGE) in perfusate were determined by RIA. Across both statuses, luminal surface secretion of PGF was stimulated (P less than .05) by pCSP. Treatment with pCSP decreased secretion of PGE from myometrial surface of endometrium from cyclic gilts and increased (P less than .01) secretion of PGE from the myometrial surface of endometrium from PP gilts. In Experiment 3, pCSP were separated into acidic and basic fractions by anion exchange chromatography and each fraction was perifused separately over the luminal surface of endometrium from cyclic and PP gilts. Perifusion with acidic pCSP suppressed secretion of PGF by endometrium from cyclic or PP gilts; while basic pCSP did not influence secretion of PGF. These results demonstrated that products secreted by Day 15 pig conceptuses stimulate release of PGF and PGE from porcine uterine endometrium.  相似文献   

14.
Our past studies have shown that porcine myometrium produce prostaglandins (PG) during luteolysis and early pregnancy and that oxytocin (OT) and its receptor (OTr) support myometrial secretion of prostaglandins E2 and F2alpha (PGE2 and PGF2alpha) during luteolysis. This study investigates the role of intracellular Ca2+ [Ca2+]i as a mediator of OT effects on PG secretion from isolated myometrial cells in the presence or absence of progesterone (P4). Basal [Ca2+]i was similar in myometrial cells from cyclic and pregnant pigs (days 14-16). OT (10(-7)M) increased [Ca2+]i in myometrial cells of cyclic and pregnant pigs, although this effect was delayed in myometrium from pregnant females. After pre-incubation of the myocytes with P4 (10(-5)M) the influence of OT on [Ca2+]i)was delayed during luteolysis and inhibited during pregnancy. Myometrial cells in culture produce more PGE2 than PGF2alpha regardless of reproductive state of the female. OT (10(-7)M) increased PGE2 secretion after 6 and 12 h incubation for the tissue harvested during luteolysis and after 12 h incubation when myometrium from gravid females was used. In the presence of P4 (10(-5)M), the stimulatory effect of OT on PG secretion was diminished. In conclusion: (1) porcine myometrial cells in culture secrete PG preferentially during early pregnancy and produce more PGE2 than PGF2alpha, (2) OT controls myometrial PGF2alpha secretion during luteolysis, (3) release of [Ca2+]i is associated with the influence of OT on PG secretion, and (4) the effects of OT on PG secretion and Ca2+ accumulation are delayed by P4 during luteolysis and completely inhibited by P4 during pregnancy.  相似文献   

15.
Interleukin (IL)-1alpha is a potent stimulator of prostaglandin production in bovine endometrium, and IL-1 affects plasminogen activator (PA) activity in several types of cells. In this study, we determined the effects of IL-1alpha and IL-1beta on production of the prostaglandins PGF(2alpha) and PGE(2) and on PA activity in cultured bovine endometrial epithelial and stromal cells. We also determined the effects of PGE(2) and PGF(2alpha) on PA activity in these cells. Finally, we used RT-PCR to examine the expression of IL-1alpha, IL-1beta, and IL-1 receptor type 1 (IL-1R) mRNA in cultured bovine endometrial cells. This analysis revealed that IL-1alpha mRNA was present only in the stromal cells, whereas IL-1beta and IL-1R mRNAs were present in both cell types. When cultured cells were exposed to IL-1alpha and IL-1beta at concentrations ranging from 0.006 to 3 nM for 24h, IL-1alpha and IL-1beta were found to dose-dependently stimulate PGE(2) and PGF(2alpha) production in stromal cells (P<0.05) but not in epithelial cells. On the other hand, exposure to IL-1alpha and IL-1beta dose-dependently increased PA activity in the epithelial cells, whereas neither stimulated PA production in the stromal cells. When cells were exposed to IL-1alpha and IL-1beta at concentrations ranging from 0.06 to 3 nM for 24h, the two IL-1s differed in their effects on both PGE(2) and PGF(2alpha) production in stromal cells and had significantly differed in their effects on PA activity in epithelial cells. Exposure to PGE(2) and PGF(2alpha) did not affect PA activity in either stromal or epithelial cells (P>0.05). Taken together, these results suggest the possibility that both IL-1alpha and IL-1beta are produced by the stromal cells, that IL-1beta is produced by the epithelial cells, and that IL-1alpha is a far more potent stimulator than IL-1beta of prostaglandin and PA production in cultured bovine endometrial epithelial and stromal cells.  相似文献   

16.
The capacity of separated glandular and stromal cells from endometrium and first trimester decidua to release prostaglandins (PGs) was studied over 48 hours in culture. Glandular preparations released more PGs than stromal preparations in all tissues. Stromal release of PGs did not alter throughout the cycle or in early pregnancy but the capacity of glandular preparations to release PGs varied considerably. Proliferative glands released most PGF2 alpha and PGE2 followed by secretory glands and decidua. Histamine (10(-5)) stimulated PG release from endometrial and decidual glands but the response of proliferative glands was greatest. Actinomycin D stimulated release of PGF2 alpha and PGE2 from glandular cells of secretory endometrium and decidua. These results suggest that in vitro release of PGs is suppressed after ovulation and is in part due to inhibition of PG release by a protein or proteins synthesized in the glandular fraction of secretory endometrium or decidua.  相似文献   

17.
Jamshidi AA  Girard D  Beaudry F  Goff AK 《Steroids》2007,72(13):843-850
Oxytocin receptor (OTR) expression is suppressed by progesterone (P4) during the luteal phase of the estrous cycle and then it increases at the time of luteolysis, but its regulation is still not completely understood. The objective of this work was to characterize P4 metabolism by endometrial cells in vitro and determine if metabolites were able to modify prostaglandin secretion in response to oxytocin (OT). Endometrial epithelial and stromal cells were incubated with 3H-P4 or 3H-pregnenolone (P5) for 6 or 24 h. Metabolites in the medium were separated by HPLC. The results showed that P4 and P5 were converted to two major polar metabolites and a less polar metabolite that was identified as 5alpha- or 5beta-pregnanedione by LC/MS. Progesterone metabolism was similar in both stromal and epithelial cells. To determine if 5alpha- or 5beta-pregnanedione were able to modify PGF(2)alpha synthesis, cells were cultured with P4, 5alpha- or 5beta-pregnanedione (100 ng ml(-1)) for 48 h and then each group of cells was incubated for a further 4-6 h with or without OT (200 ng ml(-1)). Results showed that only P4 caused significant (P<0.001) increase in basal, but not OT-stimulated, PGF(2)alpha synthesis. OT binding assays showed no significant effect of progesterone or its metabolites on OTR concentration. In conclusion, bovine endometrial cells are able to metabolize pregnenolone and progesterone but neither 5alpha- nor 5beta-pregnanedione altered prostaglandin synthesis or OTR number in endometrial epithelial cells. These data suggest that 5-pregnanediones do not play a role in the regulation OT-stimulated PGF(2)alpha secretion during the bovine estrous cycle.  相似文献   

18.
Phytoestrogens have recently been suggested to be the cause of infertility by stimulating luteolytic prostaglandin (PG) F(2alpha) secretion from endometrium in cattle. The purpose of this study was to examine the enzymatic and molecular mechanisms involved in the preferential induction of PGF(2alpha) synthesis by phytoestrogens, and whether phytoestrogens influence endometrial cell viability. Cultured bovine endometrial epithelial and stromal cells were exposed to phytoestrogens (daidzein and genistein) and their metabolites (equol and p-ethyl phenol) for 24h. Prostaglandin F(2alpha) and PGE2 were stimulated by phytoestrogens in both stromal and epithelial cells, with a preference for PGF(2alpha) synthesis in epithelial cells (P<0.001). Although RT-PCR and Western Blot analyses did not reveal the influence of phytoestrogens on either gene expression or protein level of cyclooxygenase-2 (COX-2) and PGE2 synthase (PGES) in stromal and epithelial cells (P>0.05), the stimulative effects of equol and p-ethyl phenol on PGF(2alpha) synthase-like 2 (PGFSL2) gene expression and protein level were observed only in epithelial cells (P<0.05). The same compounds did not affect PGFSL2 gene expression and protein in stromal cells (P>0.05). Exposure to phytoestrogens and their metabolites decreased cell viability in both stromal and epithelial cells. Stromal cell viability decreased to 50% of the control and was more evident than that in epithelial cells (P<0.001). The overall results suggest that infertility in cattle, caused by phytoestrogen-dependent preferential stimulation of luteolytic PGF(2alpha) synthesis, is caused by increasing PGFSL2 in epithelial cells, and by decreasing stromal cell viability, which are the main source of luteotropic PGE2 production.  相似文献   

19.
Prostaglandins (PGs) are known to modulate the proper cyclicity of bovine reproductive organs. The main luteolytic agent in ruminants is PGF2alpha, whereas PGE2 has luteotropic actions. Estradiol 17beta (E2) regulates uterus function by influencing PG synthesis. Phytoestrogens structurally resemble E2 and possess estrogenic activity; therefore, they may mimic the effects of E2 on PG synthesis and influence the reproductive system. Using a cell-culture system of bovine epithelial and stromal cells, we determined cell-specific effects of phytoestrogens (i.e., daidzein, genistein), their metabolites (i.e., equol and para-ethyl-phenol, respectively), and E2 on PGF2alpha and PGE2 synthesis and examined the intracellular mechanisms of their actions. Both PGs produced by stromal and epithelial cells were significantly stimulated by phytoestrogens and their metabolites. However, PGF2alpha synthesis by both kinds of cells was greater stimulated than PGE2 synthesis. Moreover, epithelial cells treated with phytoestrogens synthesized more PGF2alpha than stromal cells, increasing the PGF2alpha to PGE2 ratio. The epithelial and stromal cells were preincubated with an estrogen-receptor (ER) antagonist (i.e., ICI), a translation inhibitor (i.e., actinomycin D), a protein kinase A inhibitor (i.e., staurosporin), and a phospholipase C inhibitor (i.e., U73122) for 0.5 hrs and then stimulated with equol, para-ethyl-phenol, or E2. Although the action of E2 on PGF2alpha synthesis was blocked by all reagents, the stimulatory effect of phytoestrogens was blocked only by ICI and actinomycin D in both cell types. Moreover, in contrast to E2 action, phytoestrogens did not cause intracellular calcium mobilization in either epithelial or stromal cells. Phytoestrogens stimulate both PGF2alpha and PGE2 in both cell types of bovine endometrium via an ER-dependent genomic pathway. However, because phytoestrogens preferentially stimulated PGF2alpha synthesis in epithelial cells of bovine endometrium, they may disrupt uterus function by altering the PGF2alpha to PGE2 ratio.  相似文献   

20.
Although prostaglandin (PG) F(2alpha) released from the uterus has been shown to cause regression of the bovine corpus luteum (CL), the neuroendocrine, paracrine, and autocrine mechanisms regulating luteolysis and PGF(2alpha) action in the CL are not fully understood. A number of substances produced locally in the CL may be involved in maintaining the equilibrium between luteal development and its regression. The present study was carried out to determine whether noradrenaline (NA) and nitric oxide (NO) regulate the sensitivity of the bovine CL to PGF(2alpha) in vitro and modulate a positive feedback cascade between PGF(2alpha) and luteal oxytocin (OT) in cows. Bovine luteal cells (Days 8-12 of the estrous cycle) cultured in glass tubes were pre-exposed to NA (10(-5) M) or an NO donor (S-nitroso-N:-acetylpenicillamine [S-NAP]; 10(-4) M) before stimulation with PGF(2alpha) (10(-6) M). Noradrenaline significantly stimulated the release of progesterone (P(4)), OT, PGF(2alpha), and PGE(2) (P: < 0.01); however, S-NAP inhibited P(4) and OT secretion (P: < 0.05). Oxytocin secretion and the intracellular level of free Ca(2+) ([Ca(2+)](i)) were measured as indicators of CL sensitivity to PGF(2alpha). Prostaglandin F(2alpha) increased both the amount of OT secretion and [Ca(2+)](i) by approximately two times the amount before (both P: < 0.05). The S-NAP amplified the effect of PGF(2alpha) on [Ca(2+)](i) and OT secretion (both P: < 0.001), whereas NA diminished the stimulatory effects of PGF(2alpha) on [Ca(2+)](i) (P: < 0.05). Moreover, PGF(2alpha) did not exert any additionally effects on OT secretion in NA-pretreated cells. The overall results suggest that adrenergic and nitrergic agents play opposite roles in the regulation of bovine CL function. While NA stimulates P(4) and OT secretion, NO may inhibit it in bovine CL. Both NA and NO are likely to stimulate the synthesis of luteal PGs and to modulate the action of PGF(2alpha). Noradrenaline may be the factor that is responsible for the limited action of PGF(2alpha) on CL and may be involved in the protection of the CL against premature luteolysis. In contrast, NO augments PGF(2alpha) action on CL and it may be involved in the course of luteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号