首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence has proved that caspase protease activities are detected in both mammals and plants during programmed cell death (PCD). The characteristics and functions of caspase-like proteases play important roles in understanding the mechanisms of PCD in plants. In this work, we report firstly the involvement of caspase-like protease activities and effects in aluminum (Al) stress in two contrasting peanut genotypes. Caspase-like activities in the root tip cells of ‘Zhonghua 2’ (Al-sensitive) and ‘99-1507’ (Al-tolerant) were detected using synthetic caspase substrates during Al-triggered PCD. Caspase-1-, -2-, -3-, -4-, -5-, -6-, -8- and -9-like proteases were found in peanut root tip cells. VDQQDase (caspase-2-like) and WEHD (caspase-5-like) were the first detected in the plants, and almost all of the caspase-like proteases were activated during Al-induced PCD, especially caspase-3-like and caspase-1-like, which was higher in ‘Zhonghua 2’ than in ‘99-1507’. The highest activity levels of caspase-3- and caspase-1-like proteases occurred 8 and 4 h after 100 µM Al treatment, respectively. Compared with 100 µM AlCl3 treatment alone, specific caspase-3 protease inhibitor Ac-DEVD-CHO inhibited the increase of caspase-3-like protease activity, Al content, Hsr203j expression, cell death and DNA fragmentation, and the decrease in root growth induced by 100 µM AlCl3 treatment, but it was more obvious in ‘Zhonghua 2’ than in ‘99-1507’. In conclusion, there were different caspase-like proteases in root tips of peanut, and caspase-3-like protease was a crucial executioner in Al-induced PCD. Its effects in the ‘Zhonghua 2’ genotype were higher than in ‘99-1507’. An improved model of the mechanism of Al-induced PCD and Al tolerance differences in different genotypes is proposed.  相似文献   

2.
In order to characterise the possible mechanisms involved in Al toxicity some functional characteristics were analysed in young barley (Hordeum vulgare L.) seedlings cultivated between moistened filter paper. Transfer of germinated barley seeds into hydroponic culture system caused significant stress, which was manifested by root-growth inhibition and elevated Evans blue uptake of root tips. Hydroponics caused stress unabled the analysis of Al-induced stress in the young barley roots during the first day of cultivation. Several (3–4) days are required for adaptation of barley seedlings to hydroponics in spite of strong aeration of the medium. Using filter paper compared to cultivation in solution application of much higher Al concentrations were required to inhibit root growth. Al-induced root growth inhibition, Al uptake, damage of plasma-membrane (PM) permeability of root cells, as well as elevated oxalate oxidase - OxO (EC 1.2.3.4) activity were significantly correlated. While 1 mM Al concentration had no effect on barley roots growing on filter paper, 5 to 100 mM Al concentration inhibited root growth, enhanced cell death and induced oxalate oxidase activity with increasing intensity. The time course analysis of OxO gene expression and OxO activity showed that 10 mM Al increased OxO activity as soon as 3 h after exposure of roots to Al reaching its maximum at about 18 h after Al application. These results indicate that expression of OxO is activated very early after exposure of barley to Al, suggesting its role in oxidative stress and subsequent cell death caused by Al toxicity in plants.  相似文献   

3.
Our previous data showed that apoptotic suppressors inhibit aluminum (Al)-induced programmed cell death (PCD) and promote Al tolerance in yeast cells, however, very little is known about the underlying mechanisms, especially in plants. Here, we show that the Caenorhabditis elegans apoptotic suppressor Ced-9, a Bcl-2 homologue, inhibited both the Al-induced PCD and Al-induced activity of caspase-like vacuolar processing enzyme (VPE), a crucial executioner of PCD, in tobacco. Furthermore, we show that Ced-9 significantly alleviated Al inhibition of root elongation, decreased Al accumulation in the root tip and greatly inhibited Al-induced gene expression in early response to Al, leading to enhancing the tolerance of tobacco plants to Al toxicity. Our data suggest that Ced-9 promotes Al tolerance in plants via inhibition of Al-induced PCD, indicating that conserved negative regulators of PCD are involved in integrated regulation of cell survival and Al-induced PCD by an unidentified mechanism.  相似文献   

4.
 设置不同的Al 3+浓度(0、25、50、100、200、400 μmol·L-1)和培养时间 (12、24 h),研究了边缘细胞活性和大豆(Glycine max)根中 过氧化氢酶(CAT)、过氧化物酶POD)、超氧化物歧化酶SOD)随Al 3+浓度及处理时间变化的规律,并通过Hoec hst333 42-PI双重荧光染色、 梯状DNA(即DNA ladder)分析和末端脱氧核糖核酸转移酶介导的dUTP切口末端标记(即TUNEL原位标记)检测,研究了Al 3+对大豆根边缘细胞 程序性死亡诱导的生理生态作用。结果表明,Al 3+胁迫能诱导边缘细胞的死亡,随着Al 3+浓度的升高和处理时间的延长,细胞死亡率增加。通 过Hoechst33342-PI双重荧光染色、DNA ladder分析和TUNEL原位标记,检测到Al 3+胁迫下发生程序性死亡的边缘细胞。其表现为:在 400μmol·L-1 Al 3+诱导大豆根24 h时, 核酸电泳显示细胞DNA发生特异性降解并形成阶梯状电泳条带(DNA ladder),用TUNEL原位标记检测200 和400μmol·L-1 Al 3+处理12 h后的大豆根 边缘细胞,发现DNA的3′-OH端被原位特异标记,二氨基联苯胺(DAB)显色后,细胞核为阳性或强 阳性。同时,高浓度Al 3+ (>100μmol·L-1)处理下,CAT、POD和S OD活性均有不同程度的下降,CAT和SOD的活性也随处理时间的延长而降低 。说明在Al 3+胁迫下边缘细胞的死亡可能是一种程序性死亡形式,高浓度Al 3+胁迫下,通过诱导活性氧在细胞体内的产生和累积而导致细胞凋 亡,此过程是其对逆境胁迫所作出的生理生态防御性应答方式之一。  相似文献   

5.
We investigated how the pea (Pisum sativum cv. Harunoka) root, upon return to an Al-free condition, recovers from injury caused by exposure to Al. The growing region of the root during and after treatment with Al was examined by marking the root at intervals with India ink. Al-induced cell death was detected by staining with Evans blue. Root growth in 40 μM Al solution relative to that in Al-free solution (RRG) was approximately 45% from 6 h to12 h after the start of the treatment. However, values of RRG from 12 h to 24 h in Al-free solution for recovery or in the same Al solution were about 75% and 35%, respectively, indicating recovery from Al-induced growth inhibition. Images of the root characterized by zonal staining with Evans blue were observed in the sub-apical region (more than 1 mm from the tip) in Al-stressed roots. However, the interval of the stained zone was widened in the root after recovery from Al-induced growth inhibition, though it was narrower and more densely stained with time in the Al-stressed roots. During the recovery, the root apex may resume elongation in a specified region without Al-induced death or injury in cells detected by Evans blue.  相似文献   

6.
Recent studies have suggested that aluminium (Al) induces programmed cell death (PCD) in plants. To investigate possible mechanisms, fluorescence techniques were used to monitor the behaviour of mitochondria in vivo, as well as the activation of caspase-3-like activity during protoplast PCD induced by Al. A quick burst of mitochondrial reactive oxygen species (ROS) was detected in Al-treated protoplasts. The mitochondrial swelling and mitochondrial transmembrane potential (MTP) loss occurred prior to cell death. Pre-incubation with ascorbic acid (AsA, antioxidant molecule) retarded mitochondrial swelling and MTP loss. The real-time detection of caspase-3-like activation was achieved by measuring the degree of fluorescence resonance energy transfer (FRET). At 30 min after exposure to Al, caspase-3-like protease activation, indicated by the decrease in the FRET ratio, occurred, taking about 1 h to reach completion in single living protoplasts. The mitochondrial permeability transition pore (MPTP) inhibitor, cyclosporine (CsA) gave significant protection against MTP loss and subsequent caspase-3-like activation. Our data also showed that Al-induced mitochondrial ROS possibly originated from complex I and III damage in the respiratory chain through the interaction between Al and iron-sulphur (Fe-S) protein. Alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, was demonstrated to play protective roles in Al-induced protoplast death. Our results showed that mitochondrial swelling and MTP loss, as well as the generation of mitochondrial ROS play important roles in Al-induced caspase-3-like activation and PCD, which provided new insight into the signalling cascades that modulate Al phytotoxicity mechanism.  相似文献   

7.
Previous research has reported inconsistent results from experiments on the influence of boron (B) on plant sensitivity to potentially toxic aluminium (Al) concentrations. Differences in B requirement and cell wall properties among species, especially between Poaceae and dicots, may account for this. This investigation reports amelioration by B of Al-induced inhibition of root elongation in Al-sensitive cucumber (Cucumis sativus), but not in Al-sensitive maize (Zea mays). Vital staining, however, also revealed a positive influence of B supply on Al tolerance in maize. In both species, adequate B supply decreased Al-induced damage of cell integrity. In cucumber, increasing B supply enhanced Al concentrations and haematoxylin staining in root tips. In maize, no differences for root Al among B treatments were observed. These results indicate that the positive effect of B on Al resistance was not due to less Al accumulation in root tips. Enhanced concentrations of reduced glutathione were found in roots of Al-stressed maize plants growing with adequate B. It is concluded that adequate B supply is essential for prevention of Al toxicity in both the dicot and the monocot species. In dicot cucumber, the B-induced amelioration of root elongation, despite higher Al accumulation in root tips, indicates B-induced change in either or both Al speciation and compartmentation in the tips. The protection by an adequate B supply of roots against Al-induced cell death suggests a role for B in the defence against oxidative stress. This is supported by the observation that Al induced enhanced levels of GSH in roots of maize plants growing with adequate B supply but not in those growing with either deficient or excess B concentrations.  相似文献   

8.
Horst  W.J.  Püschel  A.-K.  Schmohl  N. 《Plant and Soil》1997,192(1):23-30
The screening of 37 Zea mays L. cultivars in nutrient solution using root elongation (24 h) as a parameter showed large genotypic differences in Al resistance among the genetic material evaluated.Callose concentrations in root tips were closely and positively related to Al-induced inhibition of root elongation. Therefore, Al-induced callose formation in root tips appears to be an excellent indicator of Al injury and can be used as a selection criteria for Al sensitivity. In contrast, aluminium concentrations in root tips were not related to Al-induced inhibition of root elongation, nor to Al-induced callose formation. Callose formation was also induced by short-term A1 treatment in root tip protoplasts, and the response of protoplasts clearly reflected the cultivar-specific response to Al of intact roots. This indicates that in maize, Al sensitivity is expressed on the protoplast level.  相似文献   

9.
The short-term influence (5-180 min) of 50 microM Al on cell division was investigated in root tips of two Zea mays L. varieties differing in Al-resistance. The incorporation of bromodeoxyuridine into S-phase nuclei was visualized by immunofluorescence staining using confocal laser fluorescence microscopy. In Al-sensitive plants 5 min Al exposure was enough to inhibit cell division in the proximal meristem (250-800 microm from the tip). After 10 or 30 min with Al only, a few S-phase nuclei were found in the cortical initials. By contrast, cell division was stimulated in the distal elongation zone (2.5-3.1 mm). After 180 min the protrusion of an incipient lateral root was observed in this zone. These observations suggest a fast change in cell patterning rather than a general cariotoxic effect after exposure to Al for a short time. No such changes were found in Al-resistant maize. This is the first report showing such fast Al-induced alterations in the number and the position of dividing cells in root tips. The observation that similar changes were induced by a local supply of naphthylphthalamic acid to the distal transition zone suggests that inhibition of auxin transport plays a role in the Al-induced alteration of root cell patterning.  相似文献   

10.
It is generally understood that the inhibition of growth of root apices is the initial effect caused by aluminium (Al) toxicity. The correlation between impaired H+-fluxes across the plasma membrane (PM) and Al-induced growth inhibition, Al accumulation and callose formation in root apices of squash (Cucurbita pepo L. cv. Tetsukabuto) is reported here. The root inhibition was dependent on Al concentration, and the duration of exposure, with the damage occurring preferentially in regions with high Al accumulation and callose formation. Using the fluorescent Al indicator (Morin), Al was localized in the cell walls of the root-tip cells after 3 h and in the whole root-tip cells after 6 h of the Al treatment (50 micro M). The inhibition of H+-pumping rate in the highly purified PM vesicles obtained from the Al-treated apical root portions (1 cm) coincided with the inhibition of root growth under Al stress. Furthermore, H+-ATPase activity of PM vesicles prepared from the control root apices was strongly inhibited by Al in vitro in a dose-dependent manner. Approximately 50% inhibition was observed when PM vesicles were preincubated at Al concentration as low as 10 micro M followed by the enzyme assay in the medium without Al. Using the pH indicator (bromocresol purple), it is shown that surface pH of the control (0 Al) root apices was strongly alkalized from the starting pH of 4.5 in a time-dependent manner. By contrast, the surface pH changed only slightly in the Al-treated root apices. The changes in surface pH mediated by altered dynamics of H+ efflux and influx across the root tip PM play an important role in root growth as affected by Al.  相似文献   

11.
Salt Stress-induced Programmed Cell Death in Rice Root Tip Cells   总被引:11,自引:0,他引:11  
Salt stressed rice root tips were used to investigate the changes of reactive oxygen species (ROS) and antioxidant enzymes at the early stages of programmed cell death (PCD). The results indicated that 500 mmol/L NaCI treatment could lead to specific features of PCD in root tips, such as DNA ladder, nuclear condense and deformation, and transferase mediated dUTP nick end labeling positive reaction, which were initiated at 4 h of treatment and pro- gressed thereafter. Cytochrome c release from mitochondria into cytoplasm was also observed, which occurred at 2 h and was earlier than the above nuclear events. In the very early phase of PCD, an immediate burst in hydrogen peroxide and superoxide anion production rate was accompanied by two-phase changes of superoxide dismutases and ascorbate peroxidase. A short period of increase in the activity was followed by prolonged impairment. Thus, we conclude that salt can induce PCD in rice root tip cells, and propose that in the early phase of rice root tip cell PCD, salt stress-induced oxidative burst increased the antioxidant enzyme activity, which, in turn, scavenged the ROS and abrogated PCD. Also, when the stress is prolonged, the antioxidant system is damaged and accumulated ROS induces the PCD process, which leads to cytochrome c release and nuclear change.  相似文献   

12.
Yao  Shaochang  Luo  Shuzhen  Pan  Chunliu  Xiong  Weijiao  Xiao  Dong  Wang  Aiqin  Zhan  Jie  He  Longfei 《Plant and Soil》2020,448(1-2):479-494
Aims

Metacaspases are cysteine-dependent proteases, which play essential roles in programmed cell death (PCD), and caspase-3-like protease is the crucial executioner. However, its response mechanism to aluminum (Al)-induced PCD is still elusive.

Methods

Here, the type I metacaspase gene in peanut (Arachis hypoganea L.), AhMC1, was cloned from the Al-sensitive cultivar ZH2. Physiological and biochemical methods, as well as gene expression analyses, were employed to explore its function in Al-induced PCD in peanut root tips.

Results

AhMC1 had a 1068-bp open reading frame, encoding a peptide of 355 amino acids, and the purified protein exhibited a high caspase-3-like protease activity. Its expression levels in different tissues of peanut varieties ZH2 and 99–1507 (Al-tolerant) varied under Al-stress conditions. The subcellular localization indicated that AhMC1 was transferred from mitochondria into the cytoplasm. Furthermore, overexpressing AhMC1 reduced the resistance to Al stress. Sense transgenic plants showed a low relative root growth rate, and reduced superoxide dismutase, peroxidase, and catalase activities, compared with wild-type and antisense transgenic plants under Al-stress conditions, but had a high root-cell death rate, and increased Al and maleic dialdehyde contents.

Conclusions

The data suggest that metacaspase AhMC1 is a positive factor in Al-induced PCD in peanut root tips.

  相似文献   

13.
铝诱导植物程序性细胞死亡信号转导的研究进展   总被引:1,自引:0,他引:1  
铝是制约酸性土壤上作物生产的主要因素。铝诱导氧化胁迫产生大量活性氧/一氧化氮,引起胞质钙超载,通过线粒体信号转导途径激发相关凋亡基因,从而引起细胞主动死亡,以减轻铝对植物的进一步毒害。本文综述了铝诱导程序性细胞死亡的信号分子、相关基因以及信号转导途径,对未来的研究方向提出了展望,为深入研究植物铝毒害机理和耐铝机制提供参考。  相似文献   

14.
Several genes including oxalate oxidase (Oxo) are up-regulated in Triticum aestivum L. root tips exposed to Al. To better understand the function of Oxo during Al exposure, the protein level and enzyme activity were measured. The data indicate that both Oxo protein and activity are increased proportionally to the level of root growth inhibition (RGI). A high level of Oxo expression may result in excess H(2)O(2) production which could become toxic and induce cell death. However, the timing of H(2)O(2) production (observed after 24 h) indicates that it cannot be the primary cause of cell death first observed after 8 h. Moreover, at Al concentrations resulting in 50% RGI, we did not observe any cell death in the sensitive cultivar while a punctated pattern of death involving small groups of cells was found in the tolerant cultivar. This pattern was maintained for several days in the tolerant cultivar, suggesting the involvement of a cell death mechanism aimed at replacing epidermal cells intoxicated with Al while root growth is maintained. The accelerated epidermal cell turnover may represent a new detoxification mechanism helping to protect deeper cell layers of the meristematic and elongation zone essential for root growth.  相似文献   

15.
The interaction of boron (B) and aluminium (Al) was investigated in 5-day-old seedlings of soybean cv. Maple Arrow. Al treatment inhibited root elongation and callose formation in root tips particularly after 4-h Al treatment. After 10 and 24 h, both parameters indicated increasing recovery from Al stress. B deficiency aggravated Al toxicity compared with B sufficiency. B deficiency did lead to an increase in unmethylated pectin in the first 3 mm of the root tip. This increase in potential binding sites is reflected in generally higher Al contents in root tips of B-deficient plants. A fractionated extraction of Al from the root tips showed that citrate-exchangeable and non-exchangeable Al steeply increased up to 4 h, but then decreased after 10- and 24-h Al treatment faster in B-sufficient than in B-deficient plants. This decrease of Al contents can be explained by an Al-enhanced release of citrate from the root tips after 10-h Al treatment. However, the citrate exudation rate was the same (after 10 h) or even lower (after 24 h) in B-sufficient plants and thus cannot explain the faster decrease in Al contents of the root tips compared with the B-deficient plants. We, therefore, propose that under B deficiency, Al is more strongly bound by the pectic network of the cell wall of the root tips, which delays or prevents the recovery from initial Al stress through exudation of citrate, and thus explains the greater Al sensitivity of B-deficient common bean roots.  相似文献   

16.
Miyasaka SC  Hawes MC 《Plant physiology》2001,125(4):1978-1987
Root border cells are living cells that surround root apices of most plant species and are involved in production of root exudates. We tested predictions of the hypothesis that they participate in detection and avoidance of aluminum (Al) toxicity by comparing responses of two snapbean (Phaseolus vulgaris) cultivars (cv Dade and cv Romano) known to differ in Al resistance at the whole-root level. Root border cells of these cultivars were killed by excess Al in agarose gels or in simple salt solutions. Percent viability of Al-sensitive cv Romano border cells exposed in situ for 96 h to 200 microM total Al in an agarose gel was significantly less than that of cv Dade border cells; similarly, relative viability of harvested cv Romano border cells was significantly less than that of cv Dade cells after 24 h in 25 microM total Al in a simple salt solution. These results indicate that Al-resistance mechanisms that operate at the level of whole roots also operate at the cellular level in border cells. Al induced a thicker mucilage layer around detached border cells of both cultivars. Cultivar Dade border cells produced a thicker mucilage layer in response to 25 microM Al compared with that of cv Romano cells after 8 h of treatment and this phenomenon preceded that of observed cultivar differences in relative cell viability. Release of an Al-binding mucilage by border cells could play a role in protecting root tips from Al-induced cellular damage.  相似文献   

17.
18.
The objective of this study was to investigate the specific role of nitric oxide (NO) in the early response of hulless barley roots to copper (Cu) stress. We used the fluorescent probe diaminofluorescein-FM diacetate to establish NO localization, and hydrogen peroxide (H2O2)-special labeling and histochemical procedures for the detection of reactive oxygen species (ROS) in the root apex. An early production of NO was observed in Cu-treated root tips of hulless barley, but the detection of NO levels was decreased by supplementation with a NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO). Application of sodium nitroprusside (a NO donor) relieved Cu-induced root inhibition, ROS accumulation and oxidative damage, while c-PTIO treatment had a synergistic effect with Cu and further enhanced ROS levels and oxidative stress. In addition, the Cu-dependent increase in activities of superoxide dismutase, peroxidase and ascorbate peroxidase were further enhanced by exogenous NO, but application of c-PTIO decreased the activities of catalase and ascorbate peroxidase in Cu-treated roots. Subsequently, cell death was observed in root tips and was identified as a type of programed cell death (PCD) by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The addition of NO prevented the increase of cell death in root tips, whereas inhibiting NO accumulation further increased the number of cells undergoing PCD. These results revealed that NO production is an early response of hulless barley roots to Cu stress and that NO contributes to Cu tolerance in hulless barley possibly by modulating antioxidant defense, subsequently reducing oxidative stress and PCD in root tips.  相似文献   

19.
Aluminum (Al) stress was examined in three lines of wheat ( Triticum aestivum L.) by measuring root lengths, protein synthesis and protein accumulation in seedling root tips grown in a hydroponic system. An Al-sensitive, recurrent wheat parent (cv. Katepwa) showed very little root growth in low Al concentrations. In contrast, an Al-tolerant near isogenic line (Alikat) and Al-tolerant donor (cv. Maringa) had much greater root growth. Segregation data from an F2 population (Katepwa × Alikat) showed that one major gene controlled Al tolerance based on root growth ( X 2= 0.651). All three lines showed an approximately 2-fold increase in [35S]-Met incorporation in root tips after 3 days in Al and a comparable increase in root-tip dry weight. Maringa and Alikat root tips showed an increased total protein content while Katepwa root tips showed no increase in total protein content during the Al stress. Based on higher specific activities, insoluble proteins were preferentially translated in all three lines during Al stress. Proteinase activity in Katepwa root tips was 1.7-fold higher during Al stress, with Maringa and Alikat showing no change in proteinase activity. The Al-induced, increased proteinase activity in Katepwa appeared to inhibit soluble protein accumulation.  相似文献   

20.
Superior effectiveness of Mg over Ca in alleviating Al rhizotoxicity cannot be accounted for by predicted changes in plasma membrane Al3+ activity. The influence of Ca and Mg on the production and secretion of citrate and malate, and on Al accumulation by roots was investigated with soybean genotypes Young and PI 416937 which differ in Al tolerance. In the presence of a solution Al3+ activity of 4.6 microM, citrate and malate concentrations of tap root tips of both genotypes increased with additions of either Ca up to 3 mM or Mg up to 50 microM. Citrate efflux rate from roots exposed to Al was only enhanced with Mg additions and exceeded malate efflux rates by as much as 50-fold. Maximum citrate release occurred within 12 h after adding Mg to solution treatments. Adding 50 microM Mg to 0.8 mM CaSO4 solutions containing Al3+ activities up to 4.6 microM increased citrate concentration of tap root tips by 3- to 5-fold and root exudation of citrate by 6- to 9-fold. Plants treated with either 50 microM Mg or 3 mM Ca had similar reductions in Al accumulation at tap root tips, which coincided with the respective ability of these ions to relieve Al rhizotoxicity. Amelioration of Al inhibition of soybean root elongation by low concentrations of Mg in solution involved Mg-stimulated production and efflux of citrate by roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号