首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cactaceae are a diverse group of plants with a wide variety of morphologies. Many species of Opuntia have segmented stems in which terminal cladodes may be separated from main-stem cladodes with varying amounts of resistance. From a geometric approach, derivations were used to calculate normal (axial and bending) and shear (transverse force and torque) stresses at joints due to the weight of the cladodes. Normal and shear stresses act perpendicular and parallel to (along) the cross sections of joints, respectively. Normal stress caused by bending was >10 times that of the mean value of any other stress. Analyses were performed to determine the relationship between maximum normal stress and the amount of lignified xylem cells. Such cells had thicker cell walls compared with the various other cells of stem joints that had thin cell walls and that thus would provide the most resistance to normal stresses. An analogy was made between cactus joints and a composite beam with reinforcing rods. In such joints, thin-walled parenchyma cells might be analogous to concrete that has little resistance to tensile stress, while the thick-walled, lignified xylem cells would be analogous to reinforcing rods. There were statistically significant relationships between normal stresses (from bending and axial loads) and mean percentage of lignified xylem cells (r=0.73) and between normal stresses and total areas of lignified xylem cells (r=0.65) (more stress, more reinforcing xylem cells). Tensile portions of cactus joints had 23% lignified xylem cells, while compressive portions had only 10% lignified xylem cells in joint areas (more tension, more reinforcing xylem cells). In addition, tensile joint tissues had two to three times more thick-walled, lignified xylem cells in the outer 30% of the radius compared with other joint tissues types (more reinforcing near the surface). To our knowledge, this is the first publication to present mechanical stresses at stem joints of cacti and the first to relate these stresses to characteristics of resisting tissues in the joints of a cactus.  相似文献   

2.
Species of Opuntia exhibit a wide range of morphologies. Understanding these morphologies may require knowledge of the mechanical stresses on joints of stem segments and as well as the internal components in joints that withstand joint failure (separation of the terminal cladode from the sub-terminal cladode after weights were applied perpendicularly to the long axis). Results of stress testing terminal cladodes of Opuntia laevis provided the following conclusions: (1) amounts of applied stress for joint failure were not related to the amounts of stress on joints before stress testing; (2) breaking strength (failure stress) was accurately determined for joints from linear plots of M (bending moment) versus I/c (section modulus) [breaking stress for O. laevis was 2.77 kPa]; (3) bending moments at failure were twice as high for tensile portions than for compressive portions of joints; and (4) bending moments at failure were positively correlated with amounts of lignified xylem cells in joints [for each mm2 of lignified xylem cells in joints there was an increase of 0.06 N m of bending moment]. These data support the overall hypothesis that bending stresses are the main stresses at joints of Opuntia laevis and that lignified xylem cells are the main components that resist joint failure. Moreover, since tensile portions have more lignified xylem cells than other stem portions, tensile portions can resist more applied stress.  相似文献   

3.
Carbon and water balances for young fruits of platyopuntias   总被引:1,自引:0,他引:1  
Questions relating to transpired versus retained water for fruits, the xylem versus the phloem as water supplier to the fruits, and the importance of fruit photosynthesis for fruit dry mass gain were examined in the field for 6 species of platyopuntias ( Nopalea cochenillifera , Opuntia ficus-indica , O. megacantha , O. robusta , O. streptacantha and O. undulata ), cacti with flattened stem segments (cladodes). For plants with fruits midway between floral bud appearance and fruit maturation, transpiration was greater at night for the cladodes, as expected for Crassulacean acid metabolism (CAM) plants, but greater during the daytime for the fruits of all 6 species. Nevertheless, net CO2 uptake by fruits of these platyopuntias occurred predominantly at night, as expected for CAM plants. The water potential of the young fruits (average of −0.41 MPa) was higher than that of the cladodes (average of −0.60 MPa), indicating that water entered the fruits via the phloem rather than via the xylem. Solution entry into the fruits via the phloem supplied the water lost by transpiration and allowed for increases in fruit fresh mass (daily transpiration averaged 3.2-fold higher than daily water content increases), while the accumulating solutes were apparently polymerized to account for the higher water potentials of the fruits compared with the cladodes. The phloem thus acts as the sole supplier of water and the main supplier of dry mass (90%) to such young fruits of platyopuntias.  相似文献   

4.
Recessive mutations at three loci cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis. These irregular xylem (irx) mutations were identified by screening plants from a mutagenized population by microscopic examination of stem sections. The xylem cell defect was associated with an up to eightfold reduction in the total amount of cellulose in mature inflorescence stems. The amounts of cell wall-associated phenolics and polysaccharides were unaffected by the mutations. Examination of the cell walls by using electron microscopy demonstrated that the decreases in cellulose content of irx lines resulted in an alteration of the spatial organization of cell wall material. This suggests that a normal pattern of cellulose deposition may be required for assembly of lignin or polysaccharides. The reduced cellulose content of the stems also resulted in a decrease in stiffness of the stem material. This is consistent with the irregular xylem phenotype and suggests that the walls of irx plants are not resistant to compressive forces. Because lignin was implicated previously as a major factor in resistance to compressive forces, these results suggest either that cellulose has a direct role in providing resistance to compressive forces or that it is required for the development of normal lignin structure. The irx plants had a slight reduction in growth rate and stature but were otherwise normal in appearance. The mutations should be useful in facilitating the identification of factors that control the synthesis and deposition of cellulose and other cell wall components.  相似文献   

5.
6.
Aspects of anatomical development were correlated with internodal growth in tomato plants, variety ‘Yellow Plum,’ grown for more than 3 months. Internodal length was measured weekly in control plants and those harvested for anatomical study. Gross structure indicated progressive development with increasing age. Primary xylem and phloem first mature in distinct strands and the strands are joined laterally by procambium to form a continuous vascular cylinder. Primary phloem occurs on the outer periphery of the procambium between the early-formed vascular strands. Successive periclinal divisions in the procambium during internode elongation give rise to pronounced radial seriations of the cells. Procambial derivatives are included in the cylinder of thick-walled, lignified vascular cells that become prominent after elongation ceases. Secondary xylem is of greater radial width in the stem sectors which include protoxylem. During early secondary growth, vessels develop in the secondary xylem only in these sectors. Nucleate fibers and rays constitute the remainder of the secondary xylem. The rays exhibit an organization noted in other plants of reduced growth habit. Some of these interpretations do not agree with those described for tomato in earlier studies, and they are discussed in relation to pertinent aspects of development.  相似文献   

7.
Carica papaya L. does not contain wood, according to the botanical definition of wood as lignified secondary xylem. Despite its parenchymatous secondary xylem, these plants are able to grow up to 10‐m high. This is surprising, as wooden structural elements are the ubiquitous strategy for supporting height growth in plants. Proposed possible alternative principles to explain the compensation for lack of wood in C. papaya are turgor pressure of the parenchyma, lignified phloem fibres in the bark, or a combination of the two. Interestingly, lignified tissue comprises only 5–8% of the entire stem mass. Furthermore, the phloem fibres do not form a compact tube enclosing the xylem, but instead form a mesh tubular structure. To investigate the mechanism of papaya's unusually high mechanical strength, a set of mechanical measurements were undertaken on whole stems and tissue sections of secondary phloem and xylem. The structural Young's modulus of mature stems reached 2.5 GPa. Since this is low compared to woody plants, the flexural rigidity of papaya stem construction may mainly be based on a higher second moment of inertia. Additionally, stem turgor pressure was determined indirectly by immersing specimens in sucrose solutions of different osmolalities, followed by mechanical tests; turgor pressure was between 0.82 and 1.25 MPa, indicating that turgor is essential for flexural rigidity of the entire stem.  相似文献   

8.
为了从显微结构上进一步探讨虉草(Phalaris arundinacea L.)的抗旱耐涝性及与利用的关系,于2011年采用常规石蜡切片技术,对其根、茎叶3种营养器官进行解剖观察。结果表明,虉草根的结构自外而内依次为表皮、皮层、维管束鞘、初生韧皮部和初生木质部;茎由表皮、基本组织和维管束构成;叶片内部结构可分为表皮、叶肉和叶脉3部分。根皮层大的细胞间隙和气腔,初生木质部的后生大导管和茎基本组织解体形成的髓腔都是虉草良好的通气组织,是其耐水淹的主要显微特征。茎、叶片角质化的表皮和叶表皮所含的丰富泡状细胞组是虉草具有抗旱性的主要解剖结构特征。叶肉细胞排列紧密且只有少量气孔分布于叶片下表皮,这样的结构可减少蒸腾;叶肉细胞富含叶绿体,增强光合作用,获得更多的同化产物,确保了植株在干旱条件下也有足够的光合产物来维持正常的生理活动。茎、叶维管束部分大量的木纤维起到支撑作用。虉草根的皮层和维管柱部分、茎的基本组织和维管束部分、叶的叶脉部分都含有大面积的厚壁细胞,厚壁细胞中含有丰富的粗纤维和木质素。丰富的粗纤维、木质素等成分则是虉草能成为新能源燃料植物的必备条件。  相似文献   

9.
Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.  相似文献   

10.
Phloem versus xylem water and carbon flow between a developingdaughter cladode (flattened stem segment) and the underlyingbasal cladode of Opuntia ficus-indica was assessed using netCO2 uptake, transpiration, phloem sap concentration, and waterpotential of both organs as well as phloem and apoplastic tracers.A 14-d-old daughter cladode was a sink organ with a negativedaily net CO2 uptake; its water potential was higher than thatof the underlying basal cladode, implicating a non-xylem pathwayfor the water needed for growth. Indeed, the relatively dilutephloem sap (7.44% dry weight) of a basal cladode can supplyall the water (7.1 gd–1) along with photosynthate neededfor the growth of a 14-d-old daughter cladode; about 3% of theimported water flowed back to the basal cladode via the xylem.In contrast, a 28-d-old daughter cladode was a source organwhose water potential was lower than that of its basal cladode,so the xylem can supply the water needed (25.7 g d–1)for its growth; about 6% of the imported water flowed back tothe basal cladode along with photosynthate via the phloem. Thephloem tracer carboxyfluorescein occurred in the phloem of 14-d-olddaughter cladodes after its precursor was applied to basal cladodes.When applied to basal cladodes, the apoplastic tracers sulphorhodamineG (SR) and trisodium 8-hydroxy-1,3,6-pyrenetrisulphonate (PTS)failed to move into 14-d-old daughter cladodes within 5 h, butmoved into 28-d-old daughter cladodes within 2 h. SR and PTSmoved into basal cladodes within 2 h when applied to 14-d-olddaughter cladodes, but not within 5-6 h when applied to 28-d-olddaughter cladodes. The tracer experiments therefore confirmedthe patterns of water flow determined using water and carbonbudgets. Key words: Carboxyfluorescein, phloem-xylem water flow, source-sink water relations, suiphorhodamine G, trisodium 8-hydroxy-1,3,6-pyrenetnsulphonate  相似文献   

11.
The relationships between the vulnerability of stem xylem to cavitation, stomatal conductance, stomatal density, and leaf and stem water potential were examined in six hybrid poplar (P38P38, Walker, Okanese, Northwest, Assiniboine and Berlin) and balsam poplar (Populus balsamifera) clones. Stem xylem cavitation resistance was examined with the Cavitron technique in well-watered plants grown in the greenhouse. To investigate stomatal responses to drought, plants were subjected to drought stress by withholding watering for 5 (mild drought) and 7 (severe drought) days and to stress recovery by rewatering severely stressed plants for 30 min and 2 days. The clones varied in stomatal sensitivity to drought and vulnerability to stem xylem cavitation. P38P38 reduced stomatal conductance in response to mild stress while the balsam poplar clone maintained high leaf stomatal conductance under more severe drought stress conditions. Differences between the severely stressed clones were also observed in leaf water potentials with no or relatively small decreases in Assiniboine, P38P38, Okanese and Walker. Vulnerability to drought-induced stem xylem embolism revealed that balsam poplar and Northwest clones reached loss of conductivity at lower stem water potentials compared with the remaining clones. There was a strong link between stem xylem resistance to cavitation and stomatal responsiveness to drought stress in balsam poplar and P38P38. However, the differences in stomatal responsiveness to mild drought suggest that other drought-resistant strategies may also play a key role in some clones of poplars exposed to drought stress.  相似文献   

12.
13.
盐胁迫对大豆根系木质部压力和Na+吸收的影响   总被引:1,自引:0,他引:1  
取栽培大豆的水培幼苗为材料,用木质部压力探针和原子吸收分光光度计测定了盐胁迫条件下其根木质部压力和伤流液中Na~+含量的变化,以分析大豆抗盐吸水的机制.结果表明:在25~150 mmol/L NaCl的浓度范围内,随着盐胁迫强度的增加,大豆根木质部负压力的绝对值逐渐增大,但相对负压力和根的径向反射系数则逐渐减小;木质部伤流液中Na~+含量逐渐增加,但Na~+的相对含量则逐渐降低.同时,虽然根系吸水所需的木质部负压力(压力势)及根木质部伤流液的渗透势随着盐胁迫强度的增加都有所下降,但两者共同作用使木质部水势下降的幅度远远小于根外溶液水势(渗透势)下降的幅度,即随着根外溶液盐浓度的升高,根木质部溶液的总水势逐渐高出根外溶液的水势.上述结果说明,在盐胁迫下大豆可以利用相对小的木质部负压力逆水势梯度吸水,且通过避免对Na~+的过量吸收来适应盐胁迫环境.  相似文献   

14.
BACKGROUND AND AIMS: Unlike the dispersal mechanisms of many desert plants, the whole dead skeleton of Anastatica hierochuntica is involved in seed dispersal and preservation. This process depends on the hygrochastic nature of the lignified conducting tissue that bends when dry and straightens under wet conditions. An anatomical interpretation of this mechanical movement was investigated. METHODS: An anatomical study of the stem was conducted on the juvenile plants raised under different water treatments and on the branch-orders of adult A. hierochuntica size-classes. KEY RESULTS: In the juvenile stem of A. hierochuntica, the area of cortex, conducting tissue and pith increased with water availability. However, the hydraulic conductance decreased, resulting in a better withdrawal of water in water-stressed plants. The anatomical investigation of the hygrochastic mechanism revealed an asymmetric distribution of the cortical tissues, with the conducting tissues of the stem of juvenile and adult plants being larger in the lower side. The hydraulic conductance was better in the basal and middle branch-orders than the terminal ones, permitting better conductance of water to the subsequent branch-orders. CONCLUSIONS: The lignified conducting tissue of the whole stem, having a hygrochastic nature, controls the movement of the branches. The greater amount of conducting tissue associated with a higher density of wide xylem vessels was observed in the lower side of the stem as compared with the upper side. Consequently, the conducting tissue in the lower side of the stem was suggested to be more effective in the opening process of the curled dry branches through better and more rapid conductance of water. Alternatively, due to the few narrow xylem vessels in the upper side of the stem, it was likely that the conducting tissue in the upper side is more effective in the closing process by providing more rapid drying. The mechanical rise of water and the related hygrochastic efficiency were maximized in the basal and middle branch-orders that are mostly involved in the mechanical movement.  相似文献   

15.
Cambial division continued in decapitated Xanthium plants without concomitant xylem fiber differentiation. The application of indoleacetic acid to these plants did not affect the production of cambial derivatives or induce xylem fiber differentiation. When naphthaleneacetic acid was applied either to the second internode or to the stump of a lateral shoot, xylem fiber differentiation was induced in the newly formed cambial derivatives on the xylem side of the cambium in the stem. When naphthaleneacetic acid was applied unilaterally, xylem fiber differentiation was restricted to that side of the stem in the first internode and hypocotyl. Naphthaleneacetic acid also enhanced the production of cambial derivatives. Gibberellic acid enhanced cambial derivative production but did not affect the differentiation of xylem fibers. Similar numbers of cambial derivatives were produced in some naphthaleneacetic acid-treated plants in which xylem fiber differentiation was induced and in gibberellic acid-treated plants which did not differentiate xylem. When naphthaleneacetic acid was applied 72 hours after decapitation, the oldest of the cambial derivatives on the xylem side failed to develop into fibers although younger cells did. These results suggest that auxin has its direct effect on the induction of xylem differentiation rather than the induction of divisions prerequisite to differentiation.  相似文献   

16.
The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides.  相似文献   

17.
木质部是植株体内水分传输的主要通路,其水力特性的变化会影响植株的水分关系和果实的水分积累。目前关于番茄植株木质部解剖结构和水力特性对水分和盐分胁迫的响应及其与植株生长和果实含水量之间的关系尚不明确。本研究通过日光温室番茄盆栽试验,设置3个处理:对照,土壤含水量(θ)为75%~95%田间持水量(FC),初始电导率(EC)为0.398 dS·m-1;水分胁迫,开花前θ为75%~95% FC,开花后至成熟期θ为45%~65% FC,EC为0.398 dS·m-1;盐分胁迫,θ为75%~95% FC,EC为1.680 dS·m-1,研究了樱桃型番茄(红宝石)和中果型番茄(北番501)植株在水分和盐分胁迫下的植株生长、果实含水量以及木质部水力特性的变化。结果表明: 与对照相比,水分和盐分胁迫下茎秆横截面积和木质部导管直径分别减小了22.0%~40.7%和10.0%~18.3%,茎秆比导水率和桁架柄比导水率分别降低了8.8%~41.1%和12.9%~28.4%,抑制了植株生长,减少了地上部鲜重、果实大小、果实鲜重和含水量,且与樱桃型番茄相比,中果型番茄的降幅更大。此外,果实含水量分别与茎秆和桁架柄比导水率呈显著正相关。综上,番茄植株在水分和盐分胁迫下木质部水力特性指标减小,生长被抑制,果实鲜重显著降低,最终导致产量降低。其中,中果型番茄相较于樱桃型番茄对水分和盐分胁迫更敏感。  相似文献   

18.
Xylem networks are vulnerable to the formation and spread of gas embolisms that reduce water transport. Embolisms spread through interconduit pits, but the three-dimensional (3D) complexity and scale of xylem networks means that the functional implications of intervessel connections are not well understood. Here, xylem networks of grapevine (Vitis vinifera L.) were reconstructed from 3D high-resolution X-ray micro-computed tomography (microCT) images. Xylem network performance was then modeled to simulate loss of hydraulic conductivity under increasingly negative xylem sap pressure simulating drought stress conditions. We also considered the sensitivity of xylem network performance to changes in key network parameters. We found that the mean pit area per intervessel connection was constant across 10 networks from three, 1.5-m stem segments, but short (0.5 cm) segments fail to capture complete network connectivity. Simulations showed that network organization imparted additional resistance to embolism spread beyond the air-seeding threshold of pit membranes. Xylem network vulnerability to embolism spread was most sensitive to variation in the number and location of vessels that were initially embolized and pit membrane vulnerability. Our results show that xylem network organization can increase stem resistance to embolism spread by 40% (0.66 MPa) and challenge the notion that a single embolism can spread rapidly throughout an entire xylem network.

A complete digital reconstruction of a grapevine xylem network reveals that network connectivity imparts greater resistance to drought-induced embolism spread than pit membrane properties suggest.  相似文献   

19.
Vascular cambium in Guayule, a rubber producing Mexican shrubof Asteraceae family is non-storied. Cambial activity variesperiodically, and the vascular cambium and its immediate derivativesdo not contain rubber. However, as the xylem and phloem parenchymacells derived from the vascular cambium age, rubber depositionstarts from the cell periphery along the walls and later towardstheir cell lumen. Though the sieve tubes and companion cellsof phloem contain no rubber, all parenchyma cells of xylem andphloem, show the presence of rubber, though its amount varies.However, certain lignified xylem ray cells and lignified pithcells are devoid of rubber accumulation. Microfluorescence studiesshow that the epithelial, phloem ray parenchyma, cortical andpith cells, in descending order, have the highest to lowestrubber content. The size and number of rubber particles observedin the parenchyma cells are greatest during the period of cambialdormancy than in an active cambial period Cambium, guayule, rubber  相似文献   

20.
Sodium fluxes in sweet pepper exposed to varying sodium concentrations   总被引:7,自引:1,他引:6  
The sodium transport and distribution of sweet pepper (Capsicum annuum L.) under saline conditions were studied after transferring the plants to a sodium-free nutrient solution. Sodium stress up to 60 mM did not affect the growth of sweet pepper, as it appears able to counteract the unfavourable physiological effects of sodium efficiently. Sodium was particularly accumulated in the basal pith cells of the stem and in the root cells, while almost no sodium was directed to the leaves or the fruits. The sodium concentration in the pith cells and xylem sap gradually decreased towards the shoot tip. Removal of sodium from the medium resulted in a 50% release of sodium from the plant after 1 week without affecting the gradient in the pith cells. In contrast, the concentration profile in the xylem sap was completely changed: the sodium concentration in the xylem sap at the stem base was similar to that at the top.Phloem transport was studied in a split root experiment, in which both portions of the roots were exposed to 15 mM NaCl and one part was fed with additional 22NaCl. During continuous exposure to 15 mM NaCl no label was detected in unlabelled root parts. However, after transferring the plants to a sodium-free solution, 22Na was rapidly released from the unlabelled roots, indicating a downward phloem transport.It was concluded that pith cells, the intermediates between the xylem and phloem, play a decisive role in the recirculation of sodium throughout the plant. Release of sodium from the plants following transfer to a sodium-free solution may be explained by changes in the diffusion resistance for passive sodium efflux from the cells.Key words: Xylem, phloem, sodium, fluxes, sweet pepper   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号