首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transcriptional regulation of aluminium tolerance genes   总被引:3,自引:0,他引:3  
  相似文献   

2.
Delhaize E  Gruber BD  Ryan PR 《FEBS letters》2007,581(12):2255-2262
Soluble aluminium (Al(3+)) is the major constraint to plant growth on acid soils. Plants have evolved mechanisms to tolerate Al(3+) and one type of mechanism relies on the efflux of organic anions that protect roots by chelating the Al(3+). Al(3+) resistance genes of several species have now been isolated and found to encode membrane proteins that facilitate organic anion efflux from roots. These proteins belong to the Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE) families. We review the roles of these proteins in Al(3+) resistance as well as their roles in other aspects of mineral nutrition.  相似文献   

3.
植物耐铝的生物化学与分子机理   总被引:12,自引:1,他引:12  
某些耐铝植物在铝胁迫下分泌有机酸被认为是一个重要的抗性机制.从根系分泌出来的有机酸能与根际的Al3 结合,形成无毒性的螯合物,从而减轻了铝对根系的毒害.但是,铝诱导有机酸分泌的中间环节及调节机制至今仍不清楚.一些证据表明,铝能激活根尖细胞质膜内的阴离子通道,因而可以调节有机酸的分泌.近年来,人们开始注意一些信号分子如蛋白激酶、水杨酸等介导铝诱导有机酸的分泌,已经获得一些成果.同时,铝胁迫基因的分离和鉴定也为人们从分子水平上研究和认识铝胁迫下植物的抗性机制奠定了基础.  相似文献   

4.
Soil acidity is an impediment to agricultural production on a significant portion of arable land worldwide. Low productivity of these soils is mainly due to nutrient limitation and the presence of high levels of aluminium (Al), which causes deleterious effects on plant physiology and growth. In response to acidic soil stress, plants have evolved various mechanisms to tolerate high concentrations of Al in the soil solution. These strategies for Al detoxification include mechanisms that reduce the activity of Al3+ and its toxicity, either externally through exudation of Al-chelating compounds such as organic acids into the rhizosphere or internally through the accumulation of Al–organic acid complexes sequestered within plant cells. Additionally, root colonization by symbiotic arbuscular mycorrhizal (AM) fungi increases plant resistance to acidity and phytotoxic levels of Al in the soil environment. In this review, the role of the AM symbiosis in increasing the Al resistance of plants in natural and agricultural ecosystems under phytotoxic conditions of Al is discussed. Mechanisms of Al resistance induced by AM fungi in host plants and variation in resistance among AM fungi that contribute to detoxifying Al in the rhizosphere environment are considered with respect to altering Al bioavailability.  相似文献   

5.
Aluminum (Al) is highly toxic to plant growth. The toxicity is characterized by rapid inhibition of root elongation. However, some plant species and cultivars have evolved some mechanisms for detoxifying Al both internally and externally. In this review, the recent progress made in the research of external detoxification of Al is described. Accumulating evidence has shown that organic acids play an important role in the detoxification of Al. Some plant species and cultivars respond to Al by secreting citrate, malate or oxalate from the roots. Recently, the anion channel of malate and citrate in the plasma membrane has been characterized and a gene encoding the malate channel has been cloned. The metabolism of organic acids seems to be poorly correlated with the Al-induced secretion of organic acid anions. A number of QTLs (quantitative trait loci) for Al resistance have been identified in rice, Arabidopsis, and other species. Transgenic plants with enhanced resistance to Al have also been reported, but introduction of multiple genes may be required to gain high Al resistance in future.  相似文献   

6.
Elevated concentrations of soluble aluminium (Al) reduce root growth in acid soils, but much remains unknown regarding the toxicity of this Al as well as the mechanisms by which plants respond. This review examines changes in phytohormones in Al‐stressed plants. Al often results in a rapid ‘burst’ of ethylene in root apical tissues within 15–30 min, with this regulating an increase in auxin. This production of ethylene and auxin seems to be a component of a plant‐response to toxic Al, resulting in cell wall modification or regulation of organic acid release. There is also evidence of a role of auxin in the expression of Al toxicity itself, with Al decreasing basipetal transport of auxin, thereby potentially decreasing wall loosening as required for elongation. Increasingly, changes in abscisic acid in root apices also seem to be involved in plant‐responses to toxic Al. Changes in cytokinins, gibberellins and jasmonates following exposure to Al are also examined, although little information is available. Finally, although not a phytohormone, concentrations of nitric oxide change rapidly in Al‐exposed tissues. The information presented in this review will assist in focusing future research efforts in examining the importance of phytohormones in plant tissues exposed to toxic levels of Al.  相似文献   

7.
Silicon (Si), aluminum (Al), and iron (Fe) are the three most abundant minerals in soil; however, their effects on plants differ because they are beneficial, toxic, and essential to plant growth, respectively. High accumulation of silicon in the shoots helps some plants to overcome a range of biotic and abiotic stresses. However, plants vary in their ability to take up Si from the soil and load it into the xylem and so the accumulation of silicon varies greatly between plant species. Aluminum toxicity is characterized by a rapid inhibition of root elongation but some species and even genotypes within species can tolerate Al toxicity better than others. While the mechanisms controlling this tolerance in most of the more resistant species are poorly understood, some plants are able to detoxify Al externally and/or internally by complexation with ligands or by pH changes in the rhizosphere. Iron is taken up from the soil by two efficient mechanisms called Strategy I and Strategy II, which operate in distinct phylogenic groups. Strategy I plants increase soil Fe solubility by releasing protons and reductants/chelators, such as organic acids and phenolics, into the rhizosphere, while Strategy II plants are characterized by the secretion of ferric chelating substances (phytosiderophores) coupled with a specific Fe3+: chelate uptake system. In this review, the molecular mechanisms underlying root response to Si, Al, and Fe are described.

  相似文献   


8.
This study investigates the influence of the degree of pectin esterification (DE) on the sorption of aluminium (Al) by plant roots. Ca-pectates, with varying degrees of esterification, are major constituents of the soil–root interface and of the root apoplast. Ca-pectate networks (Ca–PG and Ca–Al–PG) were formed at three DEs (0%, 26%, 65%) with custom-made cells and used as a model system for the root cell wall. Sorption of Al was conducted for 24 h at a range of oxalic acid concentrations (0–500 μM) at pH 4.50 to examine two different metal resistance mechanisms of plants. In fact, plants release organic acids either to desorb or to complex metals to prevent their sorption by plant roots.Thermal analysis showed that Al sorption did not seem to affect the stability of the pectate gels and the presence of hydrophobic groups (–CH3) at DE?>?0% seemed to even increase the stability of the gels decreasing thermal decomposition. Results suggest two potential Al tolerance mechanisms: (a) high oxalic acid concentrations (500 μM) were able to desorb almost 100% and 72% at DE 65 and 0%, respectively; (b) high oxalic acid concentrations (500 μM) and thus molar ratios of 5:1 (oxalate/Al) reduced Al sorption by 98% and 86% at DE 65 and 0%, respectively. In conclusion, both mechanisms indicate that high degrees of esterification as 65% are much more efficient in excluding Al from the apoplast and might therefore contribute to Al resistance in plants.  相似文献   

9.
有机酸在植物解铝毒中的作用及生理机制   总被引:11,自引:0,他引:11  
酸性土壤上铝毒是限制作物产量的一个重要障碍因子,具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用,在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸,草酸,苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖,不同的物种间分泌的有机酸种类,分泌的模式及生理机理存在差异,在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体,本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

10.
Role of organic acids in detoxification of aluminum in higher plants   总被引:21,自引:0,他引:21  
Phytotoxicity of aluminum ion (Al3+) is a serious problem limiting crop production on acid soils. Organic acids with Al-chelating ability play an important role in the detoxification of Al both externally and internally. Al is detoxified externally by the secretion of organic acids such as citric, oxalic, and/or malic acids from the roots. The secretion of organic acids is highly specific to Al and the site of secretion is localized to the root apex. The kind of organic acids secreted as well as secretion pattern differ among plant species. There are two patterns of Al-induced secretion of organic acids: In pattern I, there is no discernible delay between the addition of Al and the onset of the release of organic acids. Activation of the anion channel seems to be involved in this pattern; In pattern II, there is a marked lag phase between the addition of Al and the onset of organic acid release. The action of genes related to the metabolism and secretion of organic acids seems to be involved in this pattern. Internal detoxification of Al in Al-accumulating plants is achieved by the formation of Al-organic acid complex. For instance, the complex of Al-citrate (1:1) in hydrangea and Al-oxalate (1:3) in buckwheat has been identified.  相似文献   

11.
Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major AI resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify AI in the growth medium is frequently questioned. The genotypes of Al-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the AI activities in the solution were 10, 20, and 50 μM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm2 per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate Al toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of AI adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding AI. These findings suggest that protection of cell walls from binding Al by organic acids may contribute significantly to AI resistance.  相似文献   

12.
酸性土壤上铝毒是限制作物产量的一个重要障碍因子。具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用。在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸、草酸、苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖。不同的物种间分泌的有机酸种类、分泌的模式及生理机理存在差异。在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体。本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

13.

Background

Aluminium (Al) toxicity is a major agricultural constraint for crop cultivation on acid soils, which comprise a large portion of the world''s arable land. One of the most widely accepted mechanisms of Al tolerance in plants is based on Al-activated organic acid release into the rhizosphere, with organic acids forming stable, non-toxic complexes with Al. This mechanism has recently been validated by the isolation of bona-fide Al-tolerance genes in crop species, which encode membrane transporters that mediate Al-activated organic acid release leading to Al exclusion from root apices. In crop species such as sorghum and barley, members in the multidrug and toxic compound extrusion (MATE) family underlie Al tolerance by a mechanism based on Al-activated citrate release.

Scope and Conclusions

The study of Al tolerance in plants as conferred by MATE family members is in its infancy. Therefore, much is yet to be discovered about the functional diversity and evolutionary dynamics that led MATE proteins to acquire transport properties conducive to Al tolerance in plants. In this paper we review the major characteristics of transporters in the MATE family and will relate this knowledge to Al tolerance in plants. The MATE family is clearly extremely flexible with respect to substrate specificity, which raises the possibility that Al tolerance as encoded by MATE proteins may not be restricted to Al-activated citrate release in plant species. There are also indications that regulatory loci may be of pivotal importance to fully explore the potential for Al-tolerance improvement based on MATE genes.  相似文献   

14.
The resistance of some plants to Al (aluminium or aluminum) has been attributed to the secretion of Al(3+)-binding organic acid (OA) anions from the Al-sensitive root tips. Evidence for the 'OA secretion hypothesis' of resistance is substantial, but the mode of action remains unknown because the OA secretion appears to be too small to reduce adequately the activity of Al(3+) at the root surface. In this study a mechanism for the reduction of Al(3+) at the root surface and just beneath the epidermis by complexation with secreted OA(2-) is considered. According to our computations, Al(3+) activity is insufficiently reduced at the surface of the root tips to account for the Al resistance of Triticum aestivum L. cv. Atlas 66, a malate-secreting wheat. Experimental treatments to decrease the thickness of the unstirred layer (increased aeration and removal of root-tip mucilage) failed to enhance sensitivity to Al(3+). On the basis of additional modelling, the observed spatial distribution of Al in roots, and the anatomical responses to Al, it is proposed that the epidermis is an essential component of the diffusion pathway for both OA and Al. We suggest that Al(3+) in the cortex must be reduced to small concentrations in order substantially to alleviate the inhibition of root elongation and so that the outer surface of the epidermis can tolerate relatively large concentrations of Al(3+). If OA secretion is required for reducing Al(3+) mainly beneath the root surface, rather than in the rhizosphere, then the metabolic cost to plants will be greatly reduced.  相似文献   

15.
The role of fulvic, malic, and oxalic acids in alleviating the toxic effects of aluminium (Al) on tap-root elongation of soybean cv. Fitzroy, cowpea cv. Vita 4, and green gram cv. Berken was studied. Treatments consisted of a factorial combination of four Al concentrations (0, 12.5, 25 and 50 µM as Al(NO3)3·9H2O) and two concentrations either of malic or oxalic acid (0, 50 µM) or fulvic acid (0, 65 mg L-1 of organic carbon). The free monomeric Al in solution was determined using a pyrocatechol violet procedure which distinguishes between monomeric and organically complexed Al. Fulvic acid completely alleviated the toxic effect of Al at all concentrations on soybean and cowpea and at concentrations <25 µM on green gram. The non-toxic Al-fulvate complex remained in solution. Both malic and oxalic acid, at the concentrations tested, failed to alleviate Al toxicity on any species; a much higher proportion of the added Al remained in monomeric form in the presence of these acids.  相似文献   

16.
铝胁迫是酸性土壤上影响作物产量最重要的因素之一.目前,全球土壤酸化程度进一步加剧了铝胁迫.植物可通过将铝离子与有机酸螯合储藏于液泡和从根系中排出铝毒.排出铝毒主要通过苹果酸转运蛋白ALMT和柠檬酸转运蛋白MATE的跨膜运输来实现.编码ABC转运蛋白和锌指转录因子的基因与植物抗铝胁迫有关.这些抗铝毒基因的鉴别使得通过转基因和分子标记辅助育种等生物技术来提高农作物的抗铝毒能力成为可能.最后提出了植物抗铝胁迫研究中需要解决的关键问题及今后的研究方向.  相似文献   

17.
  • Most aluminium (Al)‐accumulating species are found on soils with high Al saturation and low Ca availability (Ca poor). Callisthene fasciculata Mart. (Vochysiaceae), however, is an Al‐accumulating tree restricted to Ca‐rich soils with low Al saturation in the Brazilian Cerrado savanna. Here we tested its calcicole behaviour, and the possible role of organic acids in detoxification of Al during the early stages of plant development.
  • We assessed growth, dry mass, nutrients, Al and organic acids in seedlings grown for 50 days on two contrasting Cerrado soils; one with high Ca concentrations and low Al saturation and the other with low Ca availability and high Al saturation.
  • Relative to plants on Ca‐rich soil, plants on Ca‐poor soil had necrotic spots and bronzing of leaves. Roots and shoots contained reduced concentrations of P and Cu, but higher concentrations of Fe, Al and citrate. Despite lower concentrations in the soil, Ca and Mg increased in shoots. Shoot concentrations of oxalate were also higher.
  • We confirmed C. fasciculata as an Al‐accumulating species with calcicole behaviour. The increased concentrations of organic acids in plants with higher Al accumulation suggest that high availability of soluble Al does not prevent occurrence of this species on soils with high Al saturation. Instead, the absence of C. fasciculata from Ca‐poor soils is probably due to imbalances in tissue Fe, Cu and Zn imposed by this soil type.
  相似文献   

18.
Methylmercury is a highly toxic, organic derivative found in mercury-polluted wetlands and coastal sediments worldwide. Though commonly present at low concentrations in the substrate, methylmercury can biomagnify to concentrations that poison predatory animals and humans. In the interest of developing an in situ detoxification strategy, a model plant system was transformed with bacterial genes (merA for mercuric reductase and merB for organomercurial lyase) for an organic mercury detoxification pathway. Arabidopsis thaliana plants expressing both genes grow on 50-fold higher methylmercury concentrations than wild-type plants and up to 10-fold higher concentrations than plants that express merB alone. An in vivo assay demonstrated that both transgenes are required for plants to detoxify organic mercury by converting it to volatile and much less toxic elemental mercury.  相似文献   

19.
The common sorrel, Rumex acetosa L. is well adapted to acid mineral soils with high availability of phytotoxic Al species. The mechanisms of Al resistance in this species are not established. Our goal was to assess the possible implications of organic acids and phenolic substances in Al detoxification in roots and shoots of this plant. R. acetosa plants were exposed in nutrient solution (pH 4.3) to a non-growth reducing Al concentration of 50 μM Al for 5 days. Exclusion of Al from root tips was visualized by haematoxylin staining. Tissue Al and Ca concentrations were analysed by ICP ES. Root and shoot concentrations of organic acids and phenolic substances were analysed by HPLC. A time-dependent (model II type) Al exclusion pattern in root tips was observed. Nonetheless, high Al concentrations accumulated in roots (1170 μg/g) and shoots (275 μg/g). Aluminium supply enhanced root citrate concentrations but decreased shoot organic acid levels. Aluminium induced high levels of anthraquinone in roots and of catechol, catechin and rutin in shoots. Aluminium resistance in R. acetosa implies both exclusion of Al from root tips and tolerance to high Al tissue concentrations. Citrate in roots and phenolics in shoots may bind Al in non-toxic form. Anthraquinones, as strong antioxidants, may play a role in a general defence response to the root stress.  相似文献   

20.
In acidic soils, monomeric aluminium (Al3+) can reach levelsthat are toxic to plants, thus preventing many species fromgrowing there. Organic acids chelate Al and render it non-toxic.It has been shown that exudation of organic acids by Al-tolerantcrops increases their tolerance to Al. We have extended thisobservation to wild plants by comparing the ability of ten herbsto exude organic acids in response to elevated Al levels. Wehypothesized that exudation of organic acids was related tothe ability of plants to grow on Al-rich soils. Two grasseswere grown in rhizotrons in soils with 41 and 63 µM reactiveAl. Organic acids were sampled from root tips connected to anintact plant-root system.Deschampsia flexuosa (L.) Trin. exudedmore malic acid when grown in the soil with the highest Al content.Five forbs and five grasses were also exposed to three Al levels(0, 25 and 75 µM) in a hydroponic system.Rumex acetosellaL. and Viscaria vulgaris Bernh. increased exudation of oxalicacid and Galium saxatile auct. non L. and Veronica officinalisL. increased exudation of citric acid in response to elevatedAl. The distribution of the forbs in the field as describedby soil pH was negatively related to the amount of organic acidsexuded in response to Al. In contrast, none of the grasses exudedhigher amounts of organic acids with increasing Al concentrationin the hydroponic experiment. Copyright 2001 Annals of BotanyCompany Citrate, malate, aluminium detoxification, rhizotron, hydroponics, rhizosphere, Carex pilulifera,Deschampsia flexuosa , Festuca gigantea, Galium saxatile, Geum urbanum, Holcus mollis,Milium effusum , Rumex acetosella, Veronica officinalis, Viscaria vulgaris  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号