首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mRNA for CspA, a major cold shock protein in Escherichia coli, contains an unusually long (159 bases) 5' untranslated region (5'-UTR), and its stability has been shown to play a major role in cold shock induction of CspA. The 5'-UTR of the cspA mRNA has a negative effect on its expression at 37 degrees C but has a positive effect upon cold shock. In this report, a series of cspA-lacZ fusions having a 26- to 32-base deletion in the 5'-UTR were constructed to examine the roles of specific regions within the 5'-UTR in cspA expression. It was found that none of the deletion mutations had significant effects on the stability of mRNA at both 37 and 15 degrees C. However, two mutations (Delta56-86 and Delta86-117) caused a substantial increase of beta-galactosidase activity at 37 degrees C, indicating that the deleted regions contain a negative cis element(s) for translation. A mutation (Delta2-27) deleting the highly conserved cold box sequence had little effect on cold shock induction of beta-galactosidase. Interestingly, three mutations (Delta28-55, Delta86-117, and Delta118-143) caused poor cold shock induction of beta-galactosidase. In particular, the Delta118-143 mutation reduced the translation efficiency of the cspA mRNA to less than 10% of that of the wild-type construct. The deleted region contains a 13-base sequence named upstream box (bases 123 to 135), which is highly conserved in cspA, cspB, cspG, and cspI, and is located 11 bases upstream of the Shine-Dalgarno (SD) sequence. The upstream box might be another cis element involved in translation efficiency of the cspA mRNA in addition to the SD sequence and the downstream box sequence. The relationship between the mRNA secondary structure and translation efficiency is discussed.  相似文献   

2.
CspA, the major cold shock protein of Escherichia coli, is dramatically induced immediately after cold shock. CspA production is transient and reduces to a low basal level when cells become adapted. Here we show that expression from multicopy plasmids of mutant cspA mRNAs bearing nonsense mutations in the coding region caused sustained high levels of the mutant mRNAs at low temperature, resulting in complete inhibition of cell growth ultimately leading to cell death. We demonstrate that the observed growth inhibition was caused by largely exclusive occupation of cellular ribosomes by the mutant cspA mRNAs. Such sequestration of ribosomes even occurs without a single peptide bond formation, implying that the robust translatability of the cspA mRNA is determined at the step of initiation. Further analysis demonstrated that the downstream box of the cspA mRNA was dispensable for the effect, whereas the upstream box of the mRNA was essential. Our system may offer a novel means to study sequence or structural elements involved in the translation of the cspA mRNA and may also be utilized to regulate bacterial growth at low temperature.  相似文献   

3.
The gene for CspA, the major cold-shock protein of Escherichia coli is known to be dramatically induced upon temperature downshift. Here, we report that three-base substitutions around the Shine–Dalgarno sequence in the 159-base 5'-untranslated region of the cspA mRNA stabilizes the mRNA 150-fold, resulting in constitutive expression of cspA at 37°C. This stabilization was found to be at least partially due to resistance against RNase E degradation. The cold-shock induction of cspA was also achieved by exchanging its promoter with the non-cold-shock lpp promoter. The results presented indicate that the cspA gene is efficiently transcribed even at 37°C. However, the translation of the cspA mRNA is blocked because of its extreme instability at 37°C. The presented results also demonstrate that the cspA gene is constitutively transcribed at all temperatures; however, its expression at 37°C is prevented by destabilizing its mRNA.  相似文献   

4.
The downstream box (DB) has been proposed to enhance translation of several mRNAs and to be a key element controlling the expression of cold-shocked mRNAs. However, the proposal that the DB exerts its effects through a base pairing interaction with the complementary anti-downstream box (antiDB) sequence (nt 1469-1483) located in the penultimate stem (helix 44) of 16S rRNA remains controversial. The existence of this interaction during initiation of protein synthesis under cold-shock conditions has been investigated in the present work using an Escherichia coli strain whose ribosomes lack the potential to base pair with mRNA because of a 12 bp inversion of the antiDB sequence in helix 44. Our results show that this strain is capable of cold acclimation, withstands cold shock, and its ribosomes translate mRNAs that contain or lack DB sequences with similar efficiency, comparable to that of the wild type. The structure of helix 44 in 30S ribosomal subunits from cells grown at 37 degrees C and from cells subjected to cold shock was also analyzed by binding a 32P-labeled oligonucleotide complementary to the antiDB region and by chemical probing with DMS and kethoxal. Both approaches clearly indicate that this region is in a double-stranded conformation and therefore not available for base pairing with mRNA.  相似文献   

5.
The cellular content of major cold shock protein (MCSP) mRNA transcribed from the tandem gene duplication cspA1/A2 and growth of Yersinia enterocolitica were compared when exponentially growing cultures of this bacterium were cold shocked from 30 to 20, 15, 10, 5, or 0 degrees C, respectively. A clear correlation between the time point when exponential growth resumes after cold shock and the degradation of cspA1/A2 mRNA was found. A polynucleotide phosphorylase-deficient mutant was unable to degrade cspA1/A2 mRNA properly and showed a delay, as well as a lower rate, of growth after cold shock. For this mutant, a correlation between decreasing cspA1/A2 mRNA and restart of growth after cold shock was also observed. For both wild-type and mutant cells, no correlation of restart of growth with the cellular content of MCSPs was found. We suggest that, after synthesis of cold shock proteins and cold adaptation of the cells, MCSP mRNAs must be degraded; otherwise, they trap ribosomes, prevent translation of bulk mRNA, and thus inhibit growth of this bacterium at low temperatures.  相似文献   

6.
7.
The 5'-end region of cspA mRNA contains a Cold Box sequence conserved among several cold-shock mRNAs. This region forms a stable stem-loop structure followed by an AU-rich sequence. Here we show that the Cold Box region is essential for the normal scale of cspA mRNA induction after cold shock because a deletion of the stem-loop significantly destabilizes the mRNA and reduces the cold shock-induced cspA mRNA amount by approximately 50%. The AU-rich track, however, slightly destabilizes the mRNA. The integrity of the stem is essential for the stabilizing function, whereas that of the loop sequence is less important. Overexpression of a mutant cspA mRNA devoid of both the AUG initiation codon and the coding sequence results in a severe growth inhibition at low temperature along with a derepression of the chromosomal cspA expression. Furthermore, the overexpressed RNA is stably associated with the 30 S and 70 S ribosomes. Our results demonstrate that the AUG initiation codon and the coding region containing the downstream box are not required for cspA mRNA to bind ribosomes and that the 5'-untranslated region by itself has a remarkable affinity to ribosomes at low temperature.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Heat shock in Drosophila results in repression of most normal (non-heat shock) mRNA translation and the preferential translation of the heat shock mRNAs. The sequence elements that confer preferential translation have been localized to the 5'-untranslated region (5'-UTR) for Hsp22 and Hsp70 mRNAs (in Drosophila). Hsp90 mRNA is unique among the heat shock mRNAs in having extensive secondary structure in its 5'-UTR and being abundantly represented in the non-heat shocked cell. In this study, we show that Hsp90 mRNA translation is inefficient at normal growth temperature, and substantially activated by heat shock. Its preferential translation is not based on an IRES-mediated translation pathway, because overexpression of eIF4E-BP inhibits its translation (and the translation of Hsp70 mRNA). The ability of Hsp90 mRNA to be preferentially translated is conferred by its 5'-UTR, but, in contrast to Hsp22 and -70, is primarily influenced by nucleotides close to the AUG initiation codon. We present a model to account for Hsp90 mRNA translation, incorporating results indicating that heat shock inhibits eIF4F activity, and that Hsp90 mRNA translation is sensitive to eIF4F inactivation.  相似文献   

19.
Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号