首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C4d.1 and C4d.2 are serologically defined allotypes of murine complement component C4. Previous studies in Shreffler's laboratory have shown that the structural difference between the two allotypes lies within a single tryptic peptide of the C4 alpha-chain and that the sequences of this fragment from the two allotypes (determined from nucleic acid sequences of genomic clones) differ only by the substitution of arginine in C4d.2 for glutamine in C4d.1. Hence this single amino acid change apparently is responsible for the rather striking serological difference between the two allotypes. To test this conclusion, we have used site-specific mutagenesis to alter the sequence of a full-length C4 cDNA that was derived from a mouse strain expressing the C4d.2 allotype. We substituted a glutamine codon for the arginine codon at the specified site and expressed both mutant and parent recombinant C4 proteins by transient transfection of COS cells. We found that an alloantiserum specific for C4d.1 reacts with the mutant protein but not the parent whereas an alloantiserum specific for C4d.2 reacts with the parent protein, as expected, but not the mutant. These results confirm that a single amino acid difference specifies the C4d.1 and C4d.2 allotypes.  相似文献   

2.
Oligosaccharide structure of human C4   总被引:1,自引:0,他引:1  
The oligosaccharide structure of human C4 was studied by using C4 purified from plasma and C4 secreted by human hepatoma-derived cell line, HepG2. The alpha- and beta-chains of human C4 are glycosylated, whereas the gamma-chain is devoid of carbohydrate. The alpha-chain has three complex fucosylated oligosaccharides of the biantennary type, one each on the alpha 2, alpha 3, and alpha 4 fragments. The beta-chain has a single high mannose oligosaccharide primarily of the Man9GlcNAc2 type. The approximately 2000 Mr difference between the alpha-chains of the two C4 gene products (C4A and C4B) was localized to the alpha 2 fragment and is not due to carbohydrate. Sulfation of the C4 alpha-chain was localized to the alpha 4 fragment of the alpha-chain. Hence, the Mr difference between the two gene products is likely to reside in amino acid differences. The oligosaccharide structure of three incompletely processed C4 molecules was also analyzed. These molecules have the oligosaccharide composition of the appropriate individual subunits. Therefore, intracellular proteolytic processing to the multi-chain form of C4 is not required for proper oligosaccharide processing.  相似文献   

3.
1. One of the activation products of C4, C4b, was prepared, and the reactive thiol group on the alpha'-chain was radioactively labelled with iodo[2-14C]acetic acid. The alpha'-chain was isolated and the N-terminal amino acid sequence of the first 13 residues was determined. 2. C4b was cleaved by C3bINA in the presence of C4b-binding protein and C4d and C4c isolated. The radioactive label and therefore the reactive thiol group were located to C4d. 3. C4c was reduced and alkylated and the two alpha'-chain fragments of C4c were separated. 3. The molecular weights, amino acid analyses and carbohydrate content of the three alpha'-chain fragments were determined. C4d has a mol.wt. of 44500 and a carbohydrate content of 6%. The two alpha'-chain fragments of C4c have mol.wts. of 25000 (alpha 3) and 12000 (alpha 4) and carbohydrate contents of 10 and 22% respectively. 4. The N-terminal amino acid sequences of C4d, the alpha 3 and the alpha 4 fragments were determined for 18, 24 and 11 residues respectively and, by comparison with the N-terminal sequence of the C4b alpha'-chain, the 25000-mol.wt. fragment (alpha 3) was shown to be derived from the N-terminal part of the alpha'-chain. 5. C-Terminal analyses were done on the alpha'-chain and its three fragments. Arginine was found to be the C-terminal residue of C4d and of the alpha 3 fragment. The C-terminal residue of the alpha'-chain and of the alpha 4 fragment could not be identified. The order of the three fragments of the alpha'-chain is therefore: alpha 3(25000)--C4d(44500)--alpha 4(12000). The specificity of C3bINA is for an Arg--Xaa peptide bond.  相似文献   

4.
C4 fulfills a vital role in the propagation of the classical and lectin pathways of the complement system. Although there are no reports to date of a C4 functional activity that is mediated solely by the C4d region, evidence clearly points to it having a vital role in a number of the properties of native C4 and its major activation fragment, C4b. Contained within the C4d region are the thioester-forming residues, the four isotype-specific residues controlling the C4A/C4B transacylation preferences, a binding site for nascent C3b important in assembling the classical pathway C5 convertase and determinants for the Chido/Rodgers (Ch/Rg) blood group antigens. In view of its functional importance, we undertook to determine the three-dimensional structure of C4d by X-ray crystallography. Here we report the 2.3A resolution structure of C4Ad, the C4d fragment derived from the human C4A isotype. Although the approximately 30% sequence identity between C4Ad and the corresponding fragment of C3 might be expected to establish a general fold similarity between the two molecules, C4Ad in fact displays a fold that is essentially superimposable on the structure of C3d. By contrast, the electrostatic characteristics of the various faces of the C4Ad molecule show marked differences from the corresponding faces of C3d, likely reflecting the differences in function between C3 and C4. Residues previously predicted to form the major Ch/Rg epitopes were proximately located and accessible on the concave surface of C4Ad. In addition to providing further insights on the current models for the covalent binding reaction, the C4Ad structure allows one to rationalize why C4d is not a ligand for complement receptor 2. Finally the structure allows for the visualization of the face of the molecule containing the binding site for C3b utilized in the assembly of classical pathway C5 convertase.  相似文献   

5.
We have examined the related H-2 genes coding for the fourth component of complement (C4) and the sex-limited protein (Slp) from 30 inbred mouse strains by Southern blot analysis. With four restriction enzymes, 11 RFLP patterns distributed among 26 different H-2 haplotypes have been identified. Strains of the same serologic H-2 haplotype were found to have identical RFLP patterns. It was confirmed that the number of C4-related genes in most haplotypes is two, Slp and C4; but H-2SWI6 (SWI6) and SWI9, which have the same RFLP pattern, have four and Sw7 has five. Although C4 and Slp have many similarities, they also were found to contain distinctive features: relative to Slp, each C4 allele examined has two insertions totaling 1.1 kb located in introns 14 and 15; and each Slp allele examined, excluding hybrids, has a provirus insertion upstream. No other large deletions or insertions were detected. The RFLP patterns are also due to 10 polymorphic restriction sites, which have been placed on standard maps; two are associated with Slp and eight are associated with C4.Sk strains, the only strains that express low serum levels of C4, have the same RFLP phenotype as Sw14, Sw18, and Swx; Sk may have arisen from a recent common ancestor of these strains. Homologous recombination has been important in the formation of existing C4 alleles. However, based on complete linkage disequilibrium between three RFLP internal to C4, the haplotypes have been divided into two groups that may have functional significance.  相似文献   

6.
Mice were irradiated, infused with thymocytes and immunized with a variety of antigens, i.e., sheep or horse red blood cells (SRBC or HRBC), diphtheria toxoid (DT) or bovine gamma-globulin (BGG). The spleen cells (T.Spleen cells) were harvested 5 days later and cellfree extracts were prepared. The extracts contained an allogeneic suppressive factor (ASF) that was capable of inhibiting IgM antibody responses of allogeneic or semi-allogeneic unirradiated mice. ASF had to be injected within 24 hr of immunization to be effective and a single injection delayed, rather than abolished, the antibody response at the cellular level. However, daily injections of ASF resulted in persistent suppression of antibody response. ASF activity was antigen nonspecific, i.e., the antigen used to stimulate ASF production did not have to be the same as the antigen used to test for ASF activity. C3H T.Spleen extracts were even immunosuppressive when prepared by exposure to C3BF1 alloantigens only; such extracts suppressed antibody responses of C3BF1 and DBA/2 mice. C3H ASF was removed from extracts after incubation with C3BF1 spleen cells but not after incubation with C3H spleen cells. C3BF1 spleen cells which had been preincubated with C3H ASF were unable to generate antibody-forming cells upon transfer to irradiated C3BF1 host mice. This suggests that the ASF molecule may be or include receptors for alloantigens. The immunogenetic requirements for ASF activity were evaluated by injecting extracts from C3H, C57BL, C3BF and BALB/c T.Spleen cells into C3H, CBA, C57BL, BALB/c, DBA/2, A or C3H.A recipient mice. All extracts tested had ASF activity. However, all allogeneic recipients were not suppressed by the extract material. The suppressive activity of ASF seemed to require two (or more) antigenic differences between donors and recipients of extract material, an H-2K or I antigen difference and a second antigen difference, possibility Ig-1. In the limited numbers of strain combinations tested, T.Spleen extracts suppressed IgM antibody response only if exposed to H-2 and Ig-1 antigens, e.g., BALB/c (H-2d, Ig-1a) ASF suppressed A (H-2a, Ig-1e) but not C3H.A (H-2a, Ig-1a) or DBA/2 (H-2d, Ig-1c). Separate ASF molecules may react with separate antigens on the cell surface, i.e., with H-2 and gammaG2a. Alternatively, one ASF molecule may react with two structurally associated antigens. If the latter is correct, it is conceivable that the beta2-microglobulin which is non-covalently linked to the major component of H-2 molecules expresses allotypic antigens coded for by Ig-1 and beta2-microglobulin is one of the antigens recognized by ASF.  相似文献   

7.
Using a direct binding assay based on photoaffinity labeling, we have studied the interaction of antigenic peptides with murine MHC class I molecules on living cells. Photoreactive derivatives were prepared by N-terminal amidation with iodo, 4-azido salicylic acid of the Kd restricted Plasmodium berghei circumsporozoite (P.b. CS) peptide 253-260 (YIPSAEKI) and the Db-restricted Adenovirus 5 early region 1A (Ad5 E1A) peptide 234-243 (SGPSNTPPEI). As assessed in functional competition experiments, both peptide derivatives retained the specific binding activity of the parental peptides for Kd or Dd, respectively. The P.b. CS photoprobe specifically labeled Kd molecules on P815 (H-2d) cells, but failed to label RMA (H-2b) cells. Conversely, the Ad5 E1A photoprobe specifically labeled Db molecules on RMA cells, but failed to label P815 cells. When the two photoprobes were tested on a panel of Con A-activated spleen cells expressing 10 different H-2 haplotypes, significant photoaffinity labeling was observed only on H-2d cells with the P.b. CS photoprobe and on H-2b cells with the Ad5 E1A photoprobe. Labeling of cell-associated Kd or Db molecules with the photoprobes was specifically inhibited by antigenic peptides known to be presented by the same class I molecule. Photoaffinity labeling of Kd with the P.b. CS photoprobe was used to study the dynamics of peptide binding on living P815 cells. Binding increased steadily with the incubation period (up to 8 h) at 37 degrees C and at ambient temperature, but was greatly reduced (greater than 95%) at 0 to 4 degrees C or in the presence of ATP synthesis inhibitors. The magnitude of the labeling was twofold higher at room temperature than at 37 degrees C. In contrast, binding to isolated Kd molecules in solution rapidly reached maximal binding, particularly at 37 degrees C. Dissociation of the photoprobe from either cell-associated or soluble Kd molecules was similar, with a half time of approximately 1 h at 37 degrees C, whereas the complexes were long-lived at 4 degrees C in both instances.  相似文献   

8.
The human complement components C4A and C4B are highly homologous proteins, but they show markedly different, class-specific, chemical reactivities. They also differ serologically in that C4A generally expresses the Rodgers (Rg) blood group antigens while C4B generally expresses the Chido (Ch) blood group antigens. C4A 1 and C4B 5 are exceptional variants which possess their class-specific chemical reactivities, but express essentially the reversed antigenicities. The genes encoding the typical Rg-positive C4A 3a and Ch-positive C4B 3 allotypes and the interesting variants C4A 1 and C4B 5 have been cloned. Characterization of the cloned DNA has revealed that the genes encoding the A 3a, A 1 and B 3 allotypes are 22 kb long, but that encoding B 5 is only 16 kb long. Comparison of derived amino acid sequences of the polymorphic C4d fragment has shown that C4A and C4B can be defined by only four isotypic amino acid differences at position 1101-1106. Over this region C4A has the sequence PCPVLD while C4B has the sequence LSPVIH, and this presumably is the cause of their different chemical reactivities. Moreover, the probable locations of the two Rg and the six Ch antigenic determinants have been deduced. Our structural data on the C4A and C4B polymorphism pattern suggests a gene conversion-like mechanism is operating in mixing the generally discrete serological phenotypes between C4A and C4B.  相似文献   

9.
A spontaneous mutation of H-2Kb, Kbm29, was discovered among the progeny of F1 hybrid parents. Unlike other characterized spontaneous class I variants, this mutant was detected with the use of antibody, rather than tissue grafting. Although Kbm29 is serologically indistinguishable from the previously described mutant molecule Kbm3, it is identical to the parental Kb by skin grafting and CTL assays. A full length cDNA of Kbm29 was amplified by polymerase chain reaction with locus-specific primers, cloned, and sequenced. Two nucleotides were found to be mutated, resulting in a single amino acid change (Lys----Ala) at amino acid 89 of the mature glycoprotein. This is consistent with the observed serologic changes, as the same amino acid substitution is responsible for the serologic profile of Kbm3. The occurrence of a mutation which is not detectable by the methods normally used to screen for H-2 mutants provides evidence that the high spontaneous rate of structural mutation described for the Kb molecule is underestimated.  相似文献   

10.
The Qa-2 antigens are class I-like molecules encoded by genes mapped telomeric to the H-2D region on chromosome 17 in the mouse. A panel of 8 new monoclonal anti-Qa-2 antibodies derived from a C3H.KBR anti-C3H. SW immunization was studied. Immunoprecipitation of125I-labeled C57BL/6 splenocyte antigens showed that all of these antibodies precipitated 40 kDa molecules which could be completely precleared by the monoclonal antibody 20-8-4, which had previously been shown to crossreact with Qa-2. One of the monoclonal antibodies (1-12-1), however, was found not to completely preclear Qa-2 antigens precipitable by the other 7 antibodies or by 20-8-4, suggesting the existence of at least two different species of Qa-2 molecules. Cell lines transfected with Q7 or Q9 genes were reactive with all 9 antibodies and the Qa-2 antigens expressed on surface membranes of these cells were completely precleared by both 20-8-4 and 1-12-1. Therefore, the observed heterogeneity of these molecules cannot be explained by an antigenic difference between the Q7 and Q9 gene products. 2D gel analyses showed identical pI spectra between Qa-2 molecules precipitated with 20-8-4 and 1-12-1. In addition, all of the monoclonal antibodies reacted with labeled antigen preparations following treatment with Endo F or neuraminidase, indicating that carbohydrate moieties are probably not responsible for the antigenic difference between the two species of Qa-2 antigen.  相似文献   

11.
The genetic control of T lymphocyte proliferative response to the five synthetic antigenic sites of myoglobin, two synthetic nonantigenic control peptides, and one "nonsense" peptide was determined in independent and recombinant strains of mice. In all the strains examined, the nonantigenic control peptides and the "nonsense" peptide did not invoke a response in myoglobin-primed mice. Further, when mice were not primed with whole myoglobin, no response was obtained with any of the antigenic sites. Haplotypes H-2d, H-2f, and H-2s are higher responders to sites 1 and 2, whereas haplotypes H-2d and H-2s are high responders to site 5. Response to site 3 may be controlled by a non-H-2-linked gene. Site 4 can stimulate H-2b and H-2k haplotypes that are nonresponders to the whole myoglobin. Studies with the recombinant strains suggested that Ir genes to sites 1 and 2 map in the I-A subregion and I-C subregion and were designated Ir-Mb-1,2(A) and Ir-Mb-1,2(C). Ir genes to sites 4 and 5 mapped only in the I-A subregion and were designated Ir-Mb-4(A) and Ir-Mb-5(A). These studies suggest that individual antigenic sites in a molecule are controlled by unique Ir genes.  相似文献   

12.
The d(G4) and d(C4) molecules in the single stranded state were synthesized by the phosphotriester method and purified. The full duplex of tetramer d(G4).d(C4) was prepared by expending about a month. The duplex-to-single strand transition was observed by UV-spectroscopy. A standard hypochromic effect was observed, which is different from some experimental results reported previously.  相似文献   

13.
Crystallographic methods have been applied to determine the high-resolution structure of the complex formed between the self-complementary oligonucleotide d(TGTACA) and the anthracycline antibiotic 4'-epiadriamycin. The complex crystallises in the tetragonal system, space group P4(1)2(1)2 with a = 2.802 nm and c = 5.293 nm, and an asymmetric unit consisting of a single DNA strand, one drug molecule and 34 solvent molecules. The refinement converged with an R factor of 0.17 for the 2381 reflections with F greater than or equal to 3 sigma F in the resolution range 0.70-0.14 nm. Two asymmetric units associate such that a distorted B-DNA-type hexanucleotide duplex is formed incorporating two drug molecules that are intercalated at the TpG steps. The amino sugar of 4'-epiadriamycin binds in the minor groove of the duplex and displays different interactions from those observed in previously determined structures. Interactions between the hydrophilic groups of the amino sugar and the oligonucleotide are all mediated by solvent molecules. Ultraviolet melting measurements and comparison with other anthracycline-DNA complexes suggest that these indirect interactions have a powerful stabilising effect on the complex.  相似文献   

14.
Analysis of the fine specificity of CTL subpopulations raised by an H-2.L locus products stimulation (H-2dm2 anti-H-2d) was performed by absorption experiments by using monolayers of macrophages of H-2m, H-2q, H-2b, and H-2k haplotypes. The results show the existence of four CTL subsets. The pattern of reactivity of three of them could be correlated with that of antibodies present in H-2dm2 anti-H-2d antisera (anti-H-2.64, anti-H-2.65, and anti-H-2.Kk). The fourth CTL subset reacted with a specificity unique to H-2.Ld molecules (a private specificity?), absent on cells from H-2m, H-2q, H-2b, and H-2k haplotypes, and undescribed as yet by serologic methods. These data support the hypothesis that the H-2.L locus products are comparable in their antigenic properties to those of the H-2.K and H-2.D loci.  相似文献   

15.
A new-H-2 mutant involving theH-2 d haplotype is described — C.B6-H- 2dm4 (dm4). This mutant strain carries a gain and loss mutation which maps to theK d gene of theH-2 complex. Serological testing comparing the mutant and the parental BALB/cKh strain failed to detect any difference between the two strains and no antibodies could be produced, although a reciprocal mixed lymphocyte reaction was observed between mutant and parent.  相似文献   

16.
Cytotoxic T lymphocytes (CTL) have been found to mediate protection in vivo against certain virus infections. CTL also may play an important role in control of infection by hepatitis C virus (HCV), but no CTL epitopes have yet been defined in any HCV protein. The nonstructural protein with homology to RNA polymerase should be a relatively conserved target protein for CTL. To investigate the epitope specificity of CTL specific for this protein, we used 28 peptides from this sequence to study murine CTL. Mice were immunized with a recombinant vaccinia virus expressing the HCV nonstructural region corresponding to the flavivirus NS5 gene (RNA polymerase), and the primed spleen cells were restimulated in vitro with peptides. CTL from H-2d mice responded to a single 16-residue synthetic peptide (HCV 2422 to 2437). This relatively conserved epitope was presented by H-2d class I major histocompatibility complex (MHC) molecules to conventional CD4- CD8+ CTL but was not recognized by CTL restricted by H-2b. Moreover, exon shuffle experiments using several transfectants expressing recombinant Dd/Ld and Kd demonstrated that this peptide is seen in association with alpha 1 and alpha 2 domains of the Dd class I MHC molecule. This peptide differs from the homologous segments of this nonstructural region from three other HCV isolates by one residue each. Variant peptides with single amino acid substitutions were made to test the effect of each residue on the ability to sensitize targets. Neither substitution affected recognition. Therefore, these conservative mutations affected peptide interaction neither with the Dd class I MHC molecule nor with the T-cell receptor. Because these CTL cross-react with all four sequenced isolates of HCV in the United States and Japan, if human CTL display similar cross-reactivity, this peptide may be valuable for studies of HCV diagnosis and vaccine development. Our study provides the first evidence that CD8+ CTL can recognize an epitope from the HCV sequence in association with a class I MHC molecule.  相似文献   

17.
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC-1) elicits a largely serotype-specific immune response directed against previously described determinants designated antigenic sites I and II. To more precisely define these two immunodominant antigenic regions of gC-1 and to determine whether the homologous HSV-2 glycoprotein (gC-2) has similarly situated antigenic determinants, viral recombinants containing gC chimeric genes which join site I and site II of the two serotypes were constructed. The antigenic structure of the hybrid proteins encoded by these chimeric genes was studied by using gC-1- and gC-2-specific monoclonal antibodies (MAbs) in radioimmunoprecipitation, neutralization, and flow cytometry assays. The results of these analyses showed that the reactivity patterns of the MAbs were consistent among the three assays, and on this basis, they could be categorized as recognizing type-specific epitopes within the C-terminal or N-terminal half of gC-1 or gC-2. All MAbs were able to bind to only one or the other of the two hybrid proteins, demonstrating that gC-2, like gC-1, contains at least two antigenic sites located in the two halves of the molecule and that the structures of the antigenic sites in both molecules are independent and rely on limited type-specific regions of the molecule to maintain epitope structure. To fine map amino acid residues which are recognized by site I type-specific MAbs, point mutations were introduced into site I of the gC-1 or gC-2 gene, which resulted in recombinant mutant glycoproteins containing one or several residues from the heterotypic serotype in an otherwise homotypic site I background. The recognition patterns of the MAbs for these mutant molecules demonstrated that (i) single amino acids are responsible for the type-specific nature of individual epitopes and (ii) epitopes are localized to regions of the molecule which contain both shared and unshared amino acids. Taken together, the data described herein established the existence of at least two distinct and structurally independent antigenic sites in gC-1 and gC-2 and identified subtle amino acid sequence differences which contribute to type specificity in antigenic site I of gC.  相似文献   

18.
Apamin, an 18 amino acid peptide with two disulfide bonds, elicits specific T cell proliferative responses in H-2d and H-2b mouse strains. We evaluated the processing requirement of this compact peptide by accessory cells for presentation to apamin-reactive T hybridoma cells (THC) by analyzing the IL-2 responses of 16 THC from apamin-primed BALB/c or C57BL/6 mice, to various forms of either native or chemically synthesized apamin analogs. These included: unfolded peptides (whose four sulfhydryl groups were blocked by acetamidomethyl residues), N-and/or C-truncated peptides, and an analog with a single amino acid substitution at position 10. Assessment of the Ag-specific THC responses in the presence of either live or formaldehyde-prefixed APC indicated the following: 1) all THC stringently required Ag processing; 2) in 8 of 16 cases, the simple unfolding of apamin was sufficient to eliminate the need for Ag processing, or even induced increased THC IL-2 responses (other cells required further antigenic alterations in addition to unfolding, or rare processing steps dependent on the integrity of the two disulfide bonds); and 3) for most THC, the Leu10 and the N terminus arm of apamin were shown to be critical for expression of the epitopes involved in T cell recognition. These data indicate that apamin, a natural peptide having an appropriate size for T cell triggering, acquires its antigenic conformation after a processing by APC which primarily involves an alteration of a disulfide bond-dependent peptide folding.  相似文献   

19.
CR1, CR2, DAF, MCP, factor H, C4bp, factor B, and C3 are members of a family of structurally related molecules, the majority of which belong to the complement system. Several of these molecules also share functional features such as cofactor and decay/dissociation activity and compete with one another in binding to C3b. Since factor H appears to bind to multiple sites in C3, we investigated the relationship between the factor H- and CR1-binding sites in C3b. Factor H binding to C3b is inhibited by either the C3c or C3d fragments, and addition of both fragments together augments this inhibition. One monoclonal anti-C3c antibody, anti-C3-9, which recognizes a neoantigenic epitope expressed upon cleavage to C3 to C3b, inhibited both factor H and CR1 binding to EC3b cells. This monoclonal antibody (MoAb) also inhibited factor B binding to EC3b. Two observations further supported our hypothesis that these molecules bind to proximal sites in C3b. First, a synthetic peptide spanning this region of C3b (C3(727-768)) inhibited factor H binding. Second, antibodies raised against this peptide inhibited binding to CR1, factor H, and factor B to C3b. These data show that H binds to at least two sites in C3b: the site in the C3c fragment is within the identified CR1-binding domain while the site in the C3d fragment surrounds the CR2-binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Primary structure of murine class I histocompatibility antigens has been analysed to select possible antigenic determinant. Hexapeptide Leu-Gln-Gln-Leu-Ser-Gly, homologous to the region 95-100 of the H-2Db antigen heavy chain, was synthesised by stepwise elongation of peptide chain beginning from the COOH-terminal Gly. Rabbit anti-hexapeptide antibodies were obtained and shown to interact specifically with purified H-2Db antigen as well as with the native antigen on cell surface. These antibodies bind to lymphocytes of H-2b haplotype (C57BL/6 mice) but not H-2d (BALB/c) or H-2k (CBA). These data suggest that the region 95-100 is responsible for serologic differences between the alleles of H-2 antigens, i.e. it may be a xenotypic as well as an allotypic antigenic determinant. The latter was confirmed by study of interaction of the hexapeptide with allogeneic monoclonal antibodies specific to H-2Db antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号