首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple radioenzymatic method for the determination of DOPA is described. The method is based on the conversion of DOPA to 3-O-[methyl-3H]DOPA by catechol-O-methyltransferase in the presence of S-adenosyl-[methyl-3H]methionine and purification of the labelled product by Sephadex G10 and Dowex 50 W × 4 ion exchange resin. The method has been applied to the assay of endogenous DOPA in different brain areas and to measuring DOPA accumulation after inhibition of aromatic amino acid DOPA decarboxylase.  相似文献   

2.
DL-α-monofluoromethyldopa is a potent enzyme-activated irreversible inhibitor of purified aromatic aminoacid decarboxylase. Single doses from 0.25 to 25 mg/kg cause partial to total inhibition of this enzyme in kidney and heart. Inhibition of brain enzyme becomes significant at doses above 2.5 mg/kg and is complete at 100 mg/kg. Enzyme activity begins to return after 24 hr, so that repetition of a dose at 12 hr intervals markedly increases the inhibition. Single doses of 100–250 mg/kg almost completely deplete kidney, heart and brain of endogenous catecholamines by blocking dopa decarboxylation. Serotonin is also decreased, presumbaly by the same mechanism.  相似文献   

3.
The stereochemistry of the decarboxylation reaction catalyzed by an aromatic l-amino acid decarboxylase, purified from Micrococcus percitreus, was studied using stereospecifically deuterium labelled phenylalanine (Phe). The 1H NMR spectrum of [1,2-2H2]-β-phenethylamine enzymatically derived from (2S, 3R)-[3-2H]-Phe in 2H2O was compared with that of [1-2H]-β-phenethylamine from unlabelled Phe in 2H2O. The results clearly indicate that the decarboxylation reaction of this enzyme proceeds exclusively through a course in which the configuration at C-2 of Phe is retained.  相似文献   

4.
4-[4-2H]Aminobutyrate was prepared by incubation in 2H2O of glutamate with a partially purified glutamate decarboxylase from mouse brain. The 4R configuration was assigned to the compound on the basis of 1H nmr analysis of the ω-camphanoylamide of its methyl ester in the presence of Eu(dpm)3. Moreover 4-[4(S)4-3H,U-14C]aminobutyrate was shown to be formed from [2(S)2-3H,U-14C]glutamate by the same enzyme fraction. It is therefore demonstrated that glutamate decarboxylation catalyzed by this enzyme preparation occurs with retention of configuration.  相似文献   

5.
Pyridoxal phosphate-dependent DOPA decarboxylase has been purified from bovine striatum to a specific activity of 1.6 U/mg protein. After ammonium sulfate precipitation (30–60%) it was purified by DEAE-Sephacel, Sephacryl S-200, and TSK Phenyl 5 PW chromatography. The purified enzyme showed a single silver staining band with polyacrylamide gel electrophoresis under both denaturing and non-denaturing conditions. The bovine striatal DOPA decarboxylase is a dimer (subunit Mr = 56000 by SDS-PAGE) with a native Mr of 106000 as judged by chromatography on Sephacryl S-200 and by sedimentation analysis. Similar to the DOPA decarboxylase purified from non-CNS tissues, the bovine striatal enzyme requires free sulfhydryl groups for activity, is strongly inhibited by heavy metal ions, and can decarboxylate 5-hydroxytryptophan as well. It should be noted, however, that the final enzyme preparation is enriched in DOPA decarboxylase activity. The distribution of the DOPA decarboxylase and 5-HTP decarboxylase activities also varies among several bovine brain regions. In addition, heat treatment of the enzyme preparation inactivated the two decarboxylation activities at different rates.Abbreviations AADC Aromatic L-amino Acid Decarboxylase - CNS Central Nervous System - DOPA 3,4-dihydroxyphenylalanine - DTT Dithiothreitol, 5-HTP - 5-hydroxytryptophan - Mr relative molecular weight - PLP pyridoxal 5-phosphate - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Part of this paper was presented at the 1987 Annual Pharmacology and Toxicology Conferences held at University of North Dakota School of Medicine, North Dakota, USA Res Commun Psychol Psychiat Behav 12: 227–228, 1987 (Abstr).  相似文献   

6.
Abstract— Microassays are described for histamine, histidine, and the activities of the enzymes histidine decarboxylase (EC 4.1.1.22) and histamine niethyltransferase (EC 2.1.1.8) in brain tissue. The enzymic-isotopic microassay for histamine is based on the methylation of tissue histamine by added histamine methyl-transferase and [14C]- or [3H]-labelled S-adenosyl-l -methionine. In a double-isotopic form of the assay, a tracer of [3H]histamine is employed along with [14C]S-adenosyl-l -methionine, and the ratio [14C]:[3H] reflects the amount of histamine in the sample. Because the methylation of histamine is uniform in brain samples studied, a single isotopic assay with [3H]S-adenosyl-l -methionine as the methyl donor is possible and increases sensitivity, so that 10 pg of tissue histamine can be estimated reliably. The assay for histidine involves decarboxylation of histidine by a bacterial histidine decarboxylase and measurement of the histamine formed by the enzymicisotopic procedure. In the histidine decarboxylase assay, histamine synthesized from added histidine is measured. The assay for histamine methyltransferase involves measuring the formation of [14C]methylhistamine with [14C]S-adenosyl-l -methionine serving as the methyl donor.  相似文献   

7.
H13/04, an audiogenic seizure-inducing catecholamide, has previously been demonstrated to decrease the accumulation of 5-hydroxytryptophan (5-HTP), while increasing the accumulation of dihydroxyphenylalanine (DOPA) after aromatic acid decarboxylase inhibition in vivo. The present study examined the effect of H13/04 on intracellular storage, release, and metabolism of serotonin (5-HT) and noradrenaline (NA) in vitro in order to differentiate between the primary effects of the drug and possible secondary effects due to neurotransmitter interaction. H13/04 had no effect on NA synthesis by brain minces from C57BL/6 mice, but did have a marked effect on [3H]5HT synthesis from [3H]tryptophan in mouse brain minces. H13/04 was subsequently shown to competitively inhibit tryptophan hydroxylase. The data presented in this study indicate that the primary action of H13/04 on biogenic amines is to decrease the synthesis rate of 5-HT by competitive inhibition of tryptophan hydroxylase. The lack of any effect on NA in vitro is consistent with the hypothesis that the primary biochemical action of the drug is on the 5-HT system and that the action on NA in vivo is an indirect effect possibly secondary to the inhibition of 5-HT synthesis.  相似文献   

8.

Background

3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses.

Principal Findings

In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine.

Conclusions

The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.  相似文献   

9.
We have sought to determine whether aromatic L-amino acid decarboxylase which functions as a neurotransmitter biosynthetic enzyme in neuronal cells can be distinguished from an enzyme with similar activity found in peripheral tissues where no neurotransmitters are synthesized. Aromatic L-amino acid decarboxylase was purified to electrophoretic homogeneity from bovine adrenal medulla, and highly specific antibodies were produced. In addition, a DNA clone complementary to aromatic L-amino acid decarboxylase mRNA was isolated by immunological screening of a lambda gt11 cDNA expression library. We have used these antibodies and cDNA probes for biochemical, immunochemical, and molecular analyses. A single form of aromatic L-amino acid decarboxylase is detected in rat and bovine tissue. Specifically, aromatic L-amino acid decarboxylase protein is biochemically and immunochemically indistinguishable in brain, liver, kidney, and adrenal medulla. Hybridization to aromatic L-amino acid decarboxylase cDNA identifies a single mRNA species of 2.3 kilobase pairs in rat tissue. Furthermore, Southern blot analysis reveals that a single gene codes for aromatic L-amino acid decarboxylase.  相似文献   

10.
—The effects of systemically administered 2,4,5-trihydroxyphenylalanine (6-OH-DOPA) on endogenous noradrenaline, [3H]amine uptake and fluorescence morphology has been investigated in mouse brain, heart and iris. 6-OH-DOPA in a dose of 100 mg/kg intraperitoneally caused practically no changes in these parameters. Pretreatment with a potent monoamine oxidase inhibitor (nialamide) led to a pronounced long-lasting 6-OH-DOPA induced reduction in endogenous noradrenaline, [ 3 H]amine uptake and nerve density of noradrenaline nerve terminals both in the central and peripheral nervous system. Histochemically accumulations of noradrenaline were observed in non-terminal axons. These results strongly support the view that 6-OH-DOPA can produce degeneration of both central and peripheral noradrenaline neurons. The degeneration is mediated by decarboxylation of 6-OH-DOPA to 6-OH-DA, since the effects could be abolished by decarboxylase inhibition. The effect of 6-OH-DOPA was selective on noradrenaline neurons in the brain, since neither 5-hydroxytryptamine nor dopamine neurons were affected, opening up new possibilities for studies on central noradrenaline transmitter mechanisms. In the brain there were pronounced accumulations of noradrenaline in the ascending noradrenaline axons making 6-OH-DOPA a powerful tool in the mapping of central noradrenaline pathways.  相似文献   

11.
DL-alpha-Difluoromethylarginine (DFMA) is an enzyme-activated irreversible inhibitor of arginine decarboxylase (ADC) in vitro. DFMA has also been shown to inhibit ADC activities in a variety of plants and bacteria in vivo. However, we questioned the specificity of this inhibitor for ADC in tobacco ovary tissues, since ornithine decarboxylase (ODC) activity was strongly inhibited as well. We now show that [3,4-3H]DFMA is metabolized to DL-alpha-difluoromethyl[3,4-3H]ornithine [( 3,4-3H]DFMO), the analogous mechanism-based inhibitor of ODC, by tobacco tissues in vivo. Both tobacco and mammalian (mouse, bovine) arginases (EC 3.5.3.1) hydrolyse DFMA to DFMO in vitro, suggesting a role for this enzyme in mediating the indirect inhibition of ODC by DFMA in tobacco. These results suggest that DFMA may have other effects, in addition to the inhibition of ADC, in tissues containing high arginase activities. The recent development of potent agmatine-based ADC inhibitors should permit selective inhibition of ADC, rather than ODC, in such tissues, since agmatine is not a substrate for arginase.  相似文献   

12.
In brain, phosphatidylethanolamine can be synthesized from free ethanolamine either by a pathway involving the formation of CDP-ethanolamine and its transfer to diglyceride, or by base-exchange of ethanolamine with existing phospholipids. Although de novo synthesis from serine has also been demonstrated, the metabolic pathway involved is not known. The enzyme phosphatidylserine decarboxylase appears to be involved in the synthesis of much of the phosphatidylethanolamine in liver, but the significance of this route in brain has been challenged. Our in vitro studies demonstrate the existence of phosphatidylserine decarboxylase activity in rat brain and characterize some of its properties. This enzyme is localized in the mitochondrial fraction, whereas the enzymes involved in base-exchange and the cytidine pathway are localized to microsomal membranes. Parallel in vivo studies showed that after the intracranial injection of L-[G-3H]serine, the specific activity of phosphatidylserine was greater in the microsomal fractions than in the mitochondrial fraction, whereas the opposite was true for phosphatidylethanolamine. When L-[U-14C]serine and [1-3H]ethanolamine were simultaneously injected, the 14C/3H ratio in mitochondrial phosphatidylethanolamine was 10 times that in microsomal phosphatidylethanolamine. The results demonstrate that serine is incorporated into the base moiety of phosphatidylethanolamine primarily through the decarboxylation of phosphatidylserine in brain mitochondria. A minimal value of 7% for the contribution of phosphatidylserine decarboxylase to whole-brain phosphatidylethanolamine synthesis can be estimated from the in vivo data.  相似文献   

13.
PROPERTIES AND REGIONAL DISTRIBUTION OF HISTIDINE DECARBOXYLASE IN RAT BRAIN   总被引:17,自引:14,他引:3  
—Properties of the histamine-forming enzyme in rat brain were studied, utilizing a sensitive fluorometric assay. The optimum pH was related to substrate concentration and found to be6·4 at 10?2m -histidine; the apparent Km was about 4·10?4m ; enzyme activity was inhibited by α-hydrazino -histidine and brocresine but was not affected by α-methyl DOPA or benzene. These different data suggest that the 'specific’histidine decarboxylase (EC 4.1.1.22)—and not the aromatic l -aminoacid decarboxylase—is involved. Determination of enzyme activity and histamine level in different areas of the rat brain revealed important regional differences, the two values being roughly parallel.  相似文献   

14.
In rats, intraperitoneal administration of L-5-hydroxytryptophan (200 mg/kg) causes extensive disaggregation of whole brain polysomes after one hour. Polysome disaggregation is prevented if the conversion of L-5-hydroxytryptophan to serotonin is blocked by pretreatment with an aromatic L-amino acid decarboxylase inhibitor; disaggregation is potentiated by pretreatment with a monoamine oxidase inhibitor. The brain polysome disaggregation induced by L-phenylalanine administration (1 g/kg) is not blocked by decarboxylase inhibition.  相似文献   

15.
A method for the determination of catecholic amino acids and amines by reversed-phase ion-pair high-performance liquid chromatography with electrochemical detection has been developed. By using octanesulfonic acid for ion pairing and by optimising ionic strength, pH and methanol concentration of the mobile phase, separation was achieved of 3,4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxypehnylacetic acid (DOPAC), norepinephrine (NE), epinephrine (EPI), and dopamine (DA). α-Difluoromethyldopa (DFMD) and α-monofluoromethyldopa (MFMD), two potent enzyme-activated irreversible inhibitors of aromatic amino acid decarboxylase were also separated from the natural catechols. Concentrations of catechols and inhibitors were measured in brains, hearts and kidneys of mice treated with small repeated doses of MFMD. The method has also been applied to the determination of catechols in other organs such as prostates and seminal vesicles of rats and in smaller tissues like mesenteric arteries. A semi-automated procedure making use of an automatic sample processor and a digital integrator permitted the analysis of as many as sixty samples per day.  相似文献   

16.
Using highly purified ornithine decarboxylase isolated from androgen-treated mice, [1R-2H]putrescine was generated by the decarboxylation of l-ornithine in D2O, and [1S-2H]putrescine was generated from [2-2H]ornithine by carrying out the decarboxylation in H2O. Chirality of the putrescines was then determined from the 200-MHz 1H NMR spectra of their bis-camphanamides in the presence of Eu(fod)3. These results demonstrated that decarboxylation had taken place with retention of configuration.  相似文献   

17.
STUDIES OF AMINES IN THE STRIATUM IN MONKEYS WITH NIGRAL LESIONS   总被引:2,自引:0,他引:2  
The effects of ventromedial tegmental lesions on the biosynthesis and disposition of biogenic amines in the striatum of monkeys were investigated. The concentrations of endogenous dopamine and of the intraventricularly injected [3H]dopamine were distinctly lower in the striatum on the lesion side than on the intact side. The storage of [3H]dopamine in the caudate nucleus was impaired to a much greater extent than the storage of the newly synthesized [3H]norepinephrine. The concentrations of endogenous serotonin and of the intraventricularly injected [14C]serotonin were lower in the striatum on the lesion side than on the intact side. However following MAO inhibition, the concentration of [14C]serotonin did not differ significantly on the two sides of the caudate nucleus. The in vivo biosynthesis of dopamine from tyrosine was significantly reduced in the striatum on the lesion side. Tyrosine hydroxylase and DOPA decarboxylase activities were decreased on the lesion side of the striatum as compared with the intact side. Thus, the ventromedial tegmental lesions affect the storage and the synthesis of dopamine and serotonin in the ipsilateral striatum.  相似文献   

18.
—DOPA and 5-hydroxytryptophan (5-HTP) are generally supposed to be decarboxylated in mammalian tissues by a single enzyme, the two activities being present in constant ratio through a variety of purification procedures. It has now been shown that the ratio of activity of the liver enzyme towards the two substrates can be altered by mild treatments, such as might be used in solubilization of brain preparations. DOPA decarboxylase activity was preferentially inactivated by sodium dodecyl sulphate treatment, and 5-HTP decarboxylation by urea. Previous reports that the two substrates show different pH optima but are mutually competitive, have been confirmed. The Km of the enzyme towards 5-HTP was lowest at pH 7.8 (the optimum pH for decarboxylation of this amino acid), but the variation with pH of the Km towards DOPA was unrelated to the pH optimum for decarboxylation. There appeared to be no relation between the probable ionization state of the substrates and the pH dependence of the enzyme. Studies on the binding characteristics of the enzyme for the two products, dopamine and serotonin, did not show any specific saturable binding. It is proposed that the enzyme has a complex active site, with separate affinity sites for the two substrates, adjacent to a single catalytic site.  相似文献   

19.
The conversion in the brain of intravenously administered 3H-dopa to 3H-dopamine was determined in mice at various times after the administration of several inhibitors of aromatic L-amino acid decarboxylase. The effects of these same decarboxylase inhibitors were determined on the L-dopa-induced circling in mice with unilateral 6-hydroxydopamine lesions of striatum. Pretreatment with hydrazinomethyldopa (25 mg/kg), which blocks only peripheral decarboxylase activity, increased the brain concentrations of 3H-dopa and 3H-dopamine and enhanced L-dopa-induced circling behavior. Drugs which block both peripheral and central decarboxylase activity, NSD 1015 (100 mg/kg) and a high dose of Ro44602 (800 mg/kg), blocked L-dopa-induced circling and the conversion of 3H-dopa to 3H-dopamine in the brain. Pretreatment with NSD 1055 (100 mg/kg) or α-methyl-dopa (500 mg/kg) did not block the conversion of 3H-dopa to 3H-dopamine in the brain. L-Dopa-induced contralateral circling is correlated temporally with the conversion of this amino acid to dopamine in the brain. The specific inhibitor administered and the pretreatment interval time chosen are critical factors to consider when inhibitors of cerebral decarboxylase are being employed.  相似文献   

20.
The expression vector containing the full-length cDNA of human aromatic L-amino acid decarboxylase (EC 4.1.1.28) was transfected in COS cells by a modified calcium phosphate coprecipitation method. The cells transfected with plasmids that had a true direction of the cDNA gave a major immunoreactive band at 50 kDa. This expressed enzyme catalyzed the decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA), L-5-hydroxytryptophan (L-5-HTP) and L-threo-3,4-dihydroxyphenylserine. The optimal pH of the enzyme activity with L-DOPA as a substrate was 6.5, whereas the enzyme had a broad pH optimum when L-5-HTP was used as a substrate. Addition of pyridoxal phosphate to the incubation mixture greatly enhanced the activity for both L-DOPA and L-5-HTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号