首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baer  J. 《Journal of fish biology》2004,65(S1):314-314
In spring 2001 and 2002 a small stream was stocked with tagged hatchery‐reared yearling brown trout ( Salmo trutta ), in order to study their influence on the resident brown trout population. The stream was separated into six sections: two sections without stocking, two sections where stocking doubled the trout population and two sections where the fish population was quadrupled. The working hypothesis was that due to food limitation (competition) growth of the wild fish will be negatively influenced by stocking, and wild fish will be displaced by the (possibly more aggressive) hatchery fish. Surprisingly, growth rate of wild and stocked fish of the same age was similar and independent of stocking density. Two main reasons may be responsible for this finding: only a low percentage of the stocked fish remained in the stream, and food was not limited during summer. Only 12–19% of the stocked fish were recaptured after six months, in contrats to 40–70% of one‐year old and up to 100% of older wild trout. The wild fish were not displaced by hatchery‐reared fish: During summer the wild fish remained more or less stationary, whereas most of the stocked trout had left their release site. The results indicate that in a natural stream stocking of hatchery reared brown trout does not influence negatively growth and movement of the wild fish independent of stocking density.  相似文献   

2.
A laboratory study of the social behaviour and growth performance of juvenile brown trout Salmo trutta of wild and sea-ranched origin and their crosses, indicated that the social behaviour of wild and sea-ranched fish differed. Male and female parents seemed to have a different impact on the juveniles. The category having wild mother and sea-ranched father were less aggressive, less active in general, but active in feeding, and therefore had higher growth rates. This pattern arose despite that the feeding rate and the motivation to first get a food item when food was provided did not differ between the groups of fish. Wild fish tended to be most aggressive. If sea-ranched and wild fish have different intrinsic (genetically based) 'life styles', the crosses between wild and sea-ranched fish indicate that there is likelihood for an introgression of genes adapted to hatchery environment into the genetics of wild conspecifics. This is particularly serious when hatchery-reared fish invades wild populations over many years.  相似文献   

3.
Hatchery‐reared brown trout Salmo trutta stocked in a natural stream in addition to resident wild brown trout grew more slowly than those stocked with an experimentally reduced density of brown wild trout. In both cases, hatchery‐reared brown trout grew more slowly than resident wild fish in control sections. Mortality and movements did not differ among the three categories of fish. The results showed that growth of stocked hatchery‐reared brown trout parr was density‐dependent, most likely as a consequence of increased competition. Thus, supplementary release of hatchery‐reared fish did not necessarily increase biomass.  相似文献   

4.
Efficient feeding is crucial for the growth, survival and reproductive success of most animals. In artificial-rearing environments, however, animals are deprived of many stimuli normally experienced in the wild, which may alter feeding behaviour, and thus influence their survival and reproductive success upon release in nature. In a laboratory experiment, we investigated the effect of hatchery rearing on the ability of brown trout, Salmo trutta, to capture and consume a novel live prey item. Hatchery-reared and wild-caught trout, originating from the same river, were fed single black crickets, either in isolation or in visual and olfactory contact with another hatchery-reared or wild-caught fish. Total consumption, time to first bite and feeding efficiency were monitored. Wild-caught trout ate more, were quicker to attack, and consumed attacked prey more efficiently than hatchery-reared fish. Food consumption and efficiency increased in both wild and hatchery-reared trout during the experiment. We propose that the differences in feeding ability between wild-caught and hatchery-reared brown trout were mainly due to differences in previous experience of feeding on live prey. Wild-caught trout tended to eat more and sooner when in visual contact with another fish than when in isolation. This trend was not seen for the hatchery-reared fish, which may be due to environmental differences between the hatchery and the natural stream. The initial inability of hatchery-reared fish to forage on live prey may reduce their success when released in the wild, especially when in competition with resident wild fish. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

5.
Wild and hatchery-reared 8–12-month-old (5–8 cm) trout, Salmo frurta L., were stocked in tributaries of the River Gudenb. Mortality was examined by means of electrofishing. Repeated electrofishing and handling caused a small increase in mortality. The daily instantaneous mortality rate Z was high during the first 2 months after stocking, ranging from 0.0070 for wild trout to 0.0326 for domestic trout at a stocking density of one trout per m2 and from 0.0206 (wild trout) to 0.0888 (domestic trout) at a stocking density of two trout per m2. Two months after stocking, Z decreased drastically ranging from 0.0007 (wild trout) to 0.0067 (domestic trout). When stocked, first-generation hatchery trout showed Z equal to domestic trout. Wild trout resident in the experimental stream were negatively affected by the introduction of domestic trout and wild trout from another stream. at a stocking density above the carrying capacity. It is concluded that the higher mortality of domestic trout was caused by changes in food, feeding and exercise, possibly combined with the lack of selection in the hatchery. Smolt yield at age 2+ was 3.2% (0+ trout stocked in the fall)-7.0% (1 + trout stocked in the spring) of the domestic trout stocked (approx. one-sixth to one-third of natural populations) and 65.2–68.7% of the domestic trout present before the smolt run. For first generation hatchery trout of wild origin the corresponding figures were 7.3% (age 0 +) and 93.4%, and for wild trout introduced to the experimental stream they were 11.1% (age0 +)and39.8%.  相似文献   

6.
An autumn planting of 4000 tagged yearling brown trout Salmo trutta (L.) in 1969 resulted in an over-winter survival of 26%, an angler recovery the following year of 8·1 % and made up 22 % of the March, 1970 standing population of the species. August standing populations of brown trout increased from 142 trout/ha (17·6 kg/ha) in 1969 to 360 trout/ha (39·3 kg/ha in 1970 while angler harvest of the species increased from 61 trout/ha (12·7 kg/ha) at a rate of 0·26 fish/h to 89 trout/ha (18·5 kg/ha) at a rate of 0·34/h. Using angler recovery and standing population as criteria the planting contributed substantially to the fishery. Actual contribution of stocked trout however, is questioned after detailed analysis of resident population structure and the potential of natural recruitment. It is suggested that the true benefit of stocked trout may be measured by the presence of those stocked fish in excess of the number of resident trout of that size predictable from a normal length distribution curve in waters with self-sustaining populations. Complexities in evaluating the merits of supplemental plantings of hatchery-reared brown trout to existing stream fisheries are examined.  相似文献   

7.
Batches of trout have been introduced into Chelker Reservoir in Yorkshire in the autumn and spring since the 1870's for angling purposes. Six batches of tagged, hatchery-reared brown trout Salmo trutta L. were introduced from autumn 1966 to spring 1969. During the angling season fish introduced in the spring give better catches than those stocked in the autumn. At the beginning of the season the larger fish in the spring batch are caught more often than the smaller fish from the same batch. The larger fish in the autumn batch are caught more often than the smaller fish from that batch throughout the season. The population, available to the angler from the shore was estimated to be 1491 in 1968, with 722 fish/km of shoreline. More fish survive to a second year in the reservoir than is apparent from the number of tags returned. Fish introduced in the spring usually begin growing before those introduced in the autumn, thereafter growth rates varied. The growth rate was independent of the number offish stocked up to the numbers put in.
Batches of tagged trout were retained at the hatchery up to nine months to gain relevant experience of post-tagging mortalities, tag loss rate and effect of tags on growth.  相似文献   

8.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

9.
The dietary habits and feeding rates of wild and stocked brown trout were compared for populations in a number of Irish lakes. Wild trout and stocked fish, which had been present in a fishery for 12 months or longer, tend to feed on the same dietary items at similar rates. Stocked fish in their immediate post-planting period (1–14 days) ate less than both the wild trout and established planted fish. In some instances recently stocked fish appear to have a preference for surface food items. They also consumed stones and detritic material. Data indicate that stocked fish adopted a natural diet in less than 5 months. Results are discussed in relation to angling crops of wild and stocked fish and the comparative success of autumn and spring plantings of salmonids.  相似文献   

10.
The movement and mortality of stocked brown trout Salmo trutta were investigated using radio telemetry. Four brown trout left the study area whereas the remaining fish were stationary. After 5 weeks, 13 out of 50 tagged brown trout were still alive in the stream. Surviving fish had a significantly lower mean movement per day than fish, which later either died or disappeared. This difference in behaviour was most pronounced 2 to 8 days after release. Predation by the otter Lutra lutra was probably the main cause of the observed mortality.  相似文献   

11.
Hatchery‐reared adult brown trout, Salmo trutta v. fario L., [215–335 mm standard length (LS), n = 82] were individually tagged and released into three sections of the Blanice River in May 2007. Wild populations of brown trout and grayling, Thymallus thymallus, L., in these sections and three non‐stocked control sections were also tagged. The recapture rate of hatchery‐reared adult brown trout after 6 months (18%, n = 15) was comparable to that of wild adult brown trout in stocked (15%, n = 14) and control (14%, n = 11) sections. The recapture rates of wild brown trout and grayling after 6 months were higher in control sections than in stocked sections, but the differences were not significant. The movement of recaptured large juvenile wild brown trout from stocked sections was significantly higher (36%) than from control sections (9%). Wild brown trout growth and grayling growth were unaffected by stocking with adult hatchery‐reared brown trout.  相似文献   

12.
Hansen MM 《Molecular ecology》2002,11(6):1003-1015
Indigenous salmonid fish gene pools are affected by domesticated conspecifics, derived from aquaculture escapes and deliberate releases. Variability was examined at nine microsatellite loci in order to assess the long-term impact of stocking domesticated trout in two brown trout populations. The study was based on analysis of two historical samples (1945-56), represented by old scale collections, and seven contemporary samples (1986-2000). In one population historical and contemporary samples were remarkably genetically similar despite more than a decade of intense stocking. Estimation of admixture proportions showed a small genetic contribution from domesticated trout (approximately 6%), and individual admixture analysis demonstrated a majority of nonadmixed individuals. The expected genetic contribution by domesticated trout was 64%, assessed from the number of stocked trout and assuming equal survival and reproductive performance of wild and domesticated trout. This demonstrates poor performance and low fitness of domesticated trout in the wild. In another population there was a strong genetic contribution from domesticated trout (between 57% and 88% in different samples), both in samples from a broodstock thought to represent the indigenous population and in a sample of wild spawners. Survival of domesticated trout and admixture with indigenous fish in the broodstock and subsequent stocking into the river, combined with a low population size of native trout relative to the number of stocked trout, could explain the observed introgression. Few nonadmixed individuals remained in the introgressed population, and I discuss how individual admixture analysis can be used to identify and conserve nonintrogressed remains of the population.  相似文献   

13.
In this study, we assessed whether juvenile brown trout are able to discriminate between, and swim towards, water containing unrelated conspecifics and blank stream water. In a second stage we investigated the behavioural response to sibling-scented vs. nonsibling conspecific-scented water, and how the social environment could affect growth. All the six families (full sibs) tested showed an overall preference to blank water instead of water scented by unfamiliar fish of similar age and size. This result reveals that juvenile brown trout are able to detect chemical water components released by conspecifics, and show a biased behaviour based on this ability. When trout were given the choice between water scented by sibs and unfamiliar nonsibs, results were variable, some families spent more time in the sibling-scented water channel (only significant for one of six families) while others showed the opposite trend. Large within-family variation was also observed in the responses of individual fish towards water scented by siblings and nonsiblings. When fish from three of the families were reared with either siblings or nonsiblings, we obtained results that were only partially consistent with the hypothesis that fish growth could be enhanced in the preferred social environment (which had been predicted from the results of the choice tests).  相似文献   

14.
Movements of resident brown trout (age 2+ to 9+ years) and young Atlantic salmon (age 1+), stocked as fry, were studied in July, August and September in a coastal stream in northern Norway. Between 85 and 89% of the brown trout were recaptured in the study area (346m, 1326m2) within 45m of their release point throughout the investigation period. Most specimens had moved less than 150m. Trout movements were related to local variation in density. Trout occupying those sections of stream with the lowest fish densities (5.3–10.9 fish 100m?2) had a significantly lower movement rate than fish from sections with densities between 13.7 and 31.5 fish 100m?2. Trout that moved from their marking section were significantly larger than specimens that did not leave their original site. There was a significant correlation between permanence of station each month and the mean water level that month. The majority of the trout (47%) were caught at undercut stream banks or at sites in the proximity of these. A decrease in water level during the study period resulted in a high loss (36%) of such habitat, probably forcing some individuals to move. The recapture data indicate that the trout population consists of one small (c. 15–20%) mobile, and one large sedentary component. Young salmon displayed high station permanence in July and August (93% and 96%). However, in the autumn they exhibited a significant downstream movement, and only 73% were recaptured within their release section. This movement was significantly higher for larger specimens, and is thought to occur because of a pre-winter change in habitat, initiated by a decline in stream temperature. In contrast to trout, salmon in sections containing the lowest densities (22.0–25.0 fish 100m?2) did not show significantly lower movement rates when compared with salmon at higher densities (32.2–46.3 and 51.8–60.6 fish 100m?2). The spatial distribution of young salmon indicated the formation of territorial mosaics over the stream bed, which are thought to reduce intraspecific competition.  相似文献   

15.
1.  The brown trout ( Salmo trutta ) represents one of the main freshwater resources in Spain, but habitat alterations and overharvesting have contributed to the decline or disappearance of numerous natural populations. In addition, reinforcement programs of wild populations based on releases of hatchery reared fish of exogenous origin compromise the conservation of remnant native trout resources.
2.  We present allozymic data from Central Spain trout populations including stocked and unstocked populations. Although the levels of genetic variation observed were low and affected by hatchery releases (p = 18.23%, Ho= 3.39%), they were within the range observed in other European areas.
3.  The effective introduction of hatchery reared fish is genetically homogenising the populations in the studied area and disturbing the ancestral pattern of genetic variation that distinguishes the Tajo and Duero basins. Within the eight natural populations analysed, seven had alleles assigned to the foreign trout. The introgression in these populations, following the LDH-5 * 90 allele frequency, ranged between 2% and 29.4%, but those values are not in concordance with the respective stocking effort undertaken in each population. Moreover, the release of hatchery-reared fish does not solve the problems related to the reduced size of wild populations and their recruitment instability.  相似文献   

16.
1. Introgression into natural salmonid populations from stocked conspecifics has been widely studied. Outcomes vary from no effect even after decades of stocking, to population replacement after only a couple of generations. Potential introgression caused by semi‐supportive breeding (i.e. using a mixture of local strains as brood stock) is, however, less well studied. 2. We investigated population structure of brown trout (Salmo trutta) in a regulated alpine lake with three natural, environmentally contrasting tributaries used as spawning and rearing habitat. Massive semi‐supportive breeding of admixed local strains has been implemented for decades. Stocked trout represented c. 17% of the total lake population, and a substantial post‐release survival reflects a considerable potential for introgression. However, the mark‐recapture studies indicate no spawning runs of stocked fish. 3. Using 13 polymorphic microsatellite loci, we found natural straying and non‐native reproduction, especially among wild populations inhabiting environmentally unstable habitat. Retained genetic structure across tributaries indicated low reproductive success of wild‐born non‐natives. Moreover, the genetic structure among tributaries has probably not been influenced by semi‐supportive breeding, because of recruitment failure of stocked trout.  相似文献   

17.
Hatchery reared 0+ year brown trout Salmo trutta , with 51 mm mean L T, were released in a sea trout stream in June 1991 to compare the survival of wild and introduced trout during the freshwater stage from age 0+ to 2+ years. The introduced brown trout were homozygous for a genetic marker, enabling released individuals and their offspring to be distinguished phenotypically from the local sea trout. The mean size of 0+ and 1+ year introduced parr was larger than 0+ and 1+ year wild parr, while 2+ year parr of both groups were of the same size. Half year survival rates of both introduced and wild parr increased with size up to c . 80 mm (1+ years), but then decreased, and could be described by a polynomial regression function, with the same shape for both groups. The introduced parr had, however, a significant lower survival rate than the wild parr. The number of the introduced cohort decreased from 2200 at release in 1991 to c . 20 in March 1994 ( c . 1% of the original number). Between 1994 and 2000 no introduced individuals or offspring have been observed in the study area. High mortality at the parr stage and additional mortality until the spawning, give a low probability for a genetic impact on the local population as long as releases are restricted, both in time and number of fish.  相似文献   

18.
Trade-off between egg mass and egg number in brown trout   总被引:2,自引:0,他引:2  
Individual egg mass and fecundity increased with somatic mass in first time and repeat spawning wild anadromous and freshwater resident brown trout Salmo trutta . The egg mass was larger for similar-sized trout in south (58° N) than mid Norway (63° N), whereas fecundity was higher in mid- than in south Norway, making total gonadal investment similar in the two areas. Repeat spawners had heavier eggs than similar-sized first time spawners. The egg mass of residents was c. 10% larger than that of similar-sized first time spawning anadromous trout. Common garden experiments with offspring of wild anadromous trout showed no significant correlation between egg and somatic mass in first time spawners in two of the three populations studied. In the third population, a slight positive correlation was found. Similar results were found for repeat spawners. In the three populations, fecundity increased significantly with somatic mass in both first time and repeat spawners. Wild and hatchery-reared trout showed negative correlation between egg mass and fecundity when the effect of body size was excluded, indicating a trade-off between the two parameters. In wild trout, this was caused by variation among populations, whereas in hatchery fish, within population variation was observed in egg mass over fecundity. Furthermore, the egg mass of first time and repeat spawners were positively correlated, when adjusted for fish size. Size-specific gonadal investment was significantly higher in wild anadromous than resident trout. There was no significant difference in gonadal investment between first time and repeat spawners in wild anadromous trout. However, in the hatchery-reared trout, gonadal investment was significantly higher at repeat than first time maturation. The hatchery trout did not spawn naturally, but were artificially stripped. Among populations, a part of the variation in egg mass and fecundity is phenotypically plastic, a part appears genetically determined.  相似文献   

19.
Comparisons of the genetic composition of brown trout Salmo trutta captured by anglers and by electrofishing based on three diagnostic microsatellite loci provided strong evidence that angling is selective in a stocked brown trout population. At two sites, anglers caught significantly younger trout and proportionally more introduced hatchery trout and hybrids than were observed in electrofishing surveys. Selective angling, in combination with a small legal catch size, may have considerably eliminated introduced trout and hybrids before spawning at the study sites, and thus may have reduced the introgression of alien genes into the local gene pool. Angling can be an important factor influencing the genetic structure of fish populations and should be taken into account in studies of introgressive hybridization in stocked fish populations and their management. In this study, demographic consequences of stocking were not assessed. Thus, even though the genetic consequences of stocking may be minimal or largely reversible through angling, resource competition between native and introduced trout, until they reach legal catch size, is expected to have a negative effect on the productivity of the indigenous trout population.  相似文献   

20.
SUMMARY. Atlantic salmon fry have been annually stocked into Llyn Dwythwch, North Wales, since 1969, in an attempt to increase the natural stocks of the area. The growth and survival of 1- and 2-year-old salmon were investigated, and compared with that of other lake-reared populations and also with salmon in the natural stream environment. Lake-reared salmon follow the same patterns of slow and rapid growth as found for river fish, but the growth rate was superior in the former. The variation in length – weight relationship with age and sex was investigated. Survival rates in general compared favourably with the survival in rivers, with high mortality rates of salmon in Llyn Dwythwch resulting from predation at spring stocking by the resident brown trout. This was later avoided by stocking larger fish in the autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号