首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characterization of growth factor activity in human brain   总被引:7,自引:0,他引:7  
The purification of fibroblast growth factor from bovine brain has been reported (Gospodarowicz, D., Bialecki, H., and Greenberg, G. (1978) J. Biol. Chem. 253, 3736-3743). Westall et al. (Westall, F. C., Lennon, V. A., and Gospodarowicz, D. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 4675-4678) showed that bovine brain fibroblast growth factor was composed of three fragments derived by limited proteolysis from myelin basic protein. In the present study using similar purification methods, we isolated a fraction enriched in growth factor activity from human brain. The mitogenic activity could not be resolved from myelin basic protein by chromatographic procedures but, upon isoelectric focusing, the mitogen and myelin basic protein were readily dissociated. At least two potent growth factors (pI values 7.2 to 7.4 and 8.1 to 8.6) were identified. Studies of a relatively crude basic extract of human brain suggested that the brain may contain a number of growth factors.  相似文献   

2.
The possible mitogenic effects of a number of preparations of the myelin basic protein (MBP) of human brain have been investigated in various cell types in culture, including human amniotic fluid cells. Intact human MBP, as well as fragments derived by BNPS-skatole and cathepsin D treatment, and isoelectric focusing fractions of human MBP, showed no mitogenic activity. These results are consistent with recent findings that the fibroblast growth factor (FGF) activity of bovine brain does not originate from MBP.  相似文献   

3.
Endothelial cell growth factor activity purified from bovine kidney by heparin-Sepharose affinity chromatography was previously identified as basic fibroblast growth factor [Baird, A., Esch, F., B?hlen, P., Ling, N., & Gospodarowicz, D. (1985) Regul. Pept. 12, 202-213]. We now show that a major mitogenic fraction, isolated from heparin-Sepharose-purified material by Mono-S cation-exchange chromatography and reverse-phase high-performance liquid chromatography, is related to acidic fibroblast growth factor (aFGF). Sequence analysis showed the amino-terminal sequence to be Tyr-Lys-Lys-Pro-Lys-Leu-Leu-Tyr-X-Ser-Asn-Gly-Gly-Tyr-Phe-Leu-Arg-Ile-Le u-Pro- Asp-Gly-Thr-Val-Asp-. The molecular mass of the protein, as determined by polyacrylamide gel electrophoresis, was 15.5 kDa. In combination, those data strongly suggest that this mitogen is amino terminally truncated acidic fibroblast growth factor. So far, aFGF has only been found in neural tissues, i.e., in the brain and retina. Our results strongly suggest that this mitogen also occurs in extraneural tissue.  相似文献   

4.
Abstract: We have investigated basic fibroblast growth factor (FGF-2) localization in and release from isolated bovine adrenal chromaffin cells. In contrast to previous reports, we found no evidence of fibroblast growth factor (FGF) storage in catecholamine-containing chromaffin granules. Subcellular fractionation studies did not show enrichment of FGF-2 immunoreactivity in granules, and cholinergic stimulation failed to release FGF-2 into the medium. Our results suggest that adrenal chromaffin cells resemble other FGF-2-synthesizing cell types with respect to FGF storage and secretion.  相似文献   

5.
Growth promoting activity for rat hepatocytes in bovine spleen was identified as three heparin-binding growth factors. All the features tested, such as heparin affinity, molecular mass, cross reactivity with antibody, and partial amino acid sequence, indicated that one of the three factors was identical to FGF-1 (fibroblast growth factor-1, acidic FGF), another one was related to FGF-2 (fibroblast growth factor-2, basic FGF), whereas it was more potent for hepatocytes than the FGF-2 purified from bovine brain. The third one was eluted from heparin-Sepharose column at 0.75M NaCl, of which activity was not abolished by anti-FGF-1 or FGF-2 antibodies. In addition, the mitogenic effect of this factor was synergistic with that of HGF (hepatocyte growth factor), a known potent hepatocyte mitogen, suggesting that it is a novel growth factor for hepatocytes.  相似文献   

6.
In bovine adrenal medullary cells synergistically acting type 1 and type 2 angiotensin II (AII) receptors activate the fibroblast growth factor-2 (FGF-2) gene through a unique AII-responsive promoter element. Both the type 1 and type 2 AII receptors and the downstream cyclic adenosine 1',3'-monophosphate- and protein kinase C-dependent signaling pathways activate the FGF-2 promoter through a novel signal-transducing mechanism. This mechanism, which we have named integrative nuclear FGF receptor-1 signaling, involves the nuclear translocation of FGF receptor-1 and its subsequent transactivation of the AII-responsive element in the FGF-2 promoter.  相似文献   

7.
The disaccharide beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and other small nonsulfated oligosaccharides related to heparin/heparan sulfate have been shown to bind to FGF and activated the fibroblast growth factor (FGF) signalling pathway in (F32) cells expressing the FGF receptor. Synthetic routes to beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and a glucose analogue beta-D-Glc-(1-->4)-alpha-D-GlcNAc-1-->OMe are described. The effects of these disaccharides on endothelial cell growth, which is relevant to angiogenesis, were evaluated and it was found they did not mimic the inhibitory effects that were observed for heparin albumin (HA) and that have also been observed by monosaccharide conjugates. They did not alter bovine aortic endothelial cell (BAEC) proliferation, in the presence of FGF-2 in serum free medium or in absence of FGF-2 in serum free and complete medium. Disaccharides (10 microg/mL) reduced by 25-31% the inhibition caused by HA (10 microg/mL) on BAEC growth in serum-free medium but had no effect in complete medium. There was no evidence obtained for the binding of these oligosaccharides to FGF-2 in competition with HA by ELISA.  相似文献   

8.
Triton X-100 extracted ciliary membrane protein from isolated cilia, prepared from the protozoon Tetrahymena thermophila, were fractionated by affinity chromatography on columns with covalently bound fibroblast growth factor (FGF), insulin, or concanavalin A (ConA), respectively. The eluted proteins were further analyzed by electrophoresis on sodium dodecyl sulfate polyacrylamide gels, isoelectric focusing, and by immunoblotting techniques using antibodies against the FGF receptor, platetelet derived growth factor (PDGF) receptor α-subunit, and insulin receptor β-subunit. The particular antibodies were chosen because the peptides PDGF, FGF, insulin, and ConA are chemoattractants in this organism and corresponding binding (receptor) proteins could be expected to be identified. A 66 kDa protein fraction was eluted from the FGF-MiniLeak agarose, insulin-MiniLeak agarose and ConA sepharose. This fraction responded in Western immunoblots to an antibody against the β-subunit of the human insulin receptor, to an antibody against the PDGF receptor (PDGFR) and also to an antibody against the bovine FGF receptor (FGFR) that is known, in other systems, to inhibit FGF binding to its receptor. When analyzed by SDS-PAGE and stained with Coomassie blue the 66 kDa fraction appeared as a single component. However, in some experiments it appeared more heterogeneous when stained with silver indicating the presence of minor components that may be a procedural artifact or isoforms of the same glycoprotein. The 66 kDa protein(s) migrated in isoelectric focusing with a pI of 7.4. The results are discussed in terms of the possible role of the 66 kDa glycoprotein as a protein involved in peptide-mediated cell signalling. Received: 9 June 2000/Revised: 11 January 2001  相似文献   

9.
In rat embryos, fibroblast growth factor (FGF)-16 is predominantly expressed in brown adipose tissue. To elucidate the role of FGF-16, we examined the expression of FGF-16 mRNA in rat embryonic brown adipose tissue at different developmental stages by Northern blotting analysis and in situ hybridization. FGF-16 mRNA was expressed abundantly in brown adipose tissue during embryonic day 17. 5, embryonic days 17.5-19.5, and thereafter at lower levels into the neonatal period. The expression profile of FGF-16 mRNA well corresponds to the proliferative profile of embryonic brown adipose tissue reported. We also examined the mitogenic activity of recombinant rat FGF-16 for primary brown adipocytes prepared from rat embryonic brown adipose tissue. FGF-16 showed significant mitogenic activity for primary brown adipocytes. The mitogenic activity was found to be exerted by binding and activating FGF receptor-4 in the brown adipose tissue. As a great induction of proliferation of rat brown adipose tissue during cold acclimation was reported, we also examined the expression of FGF-16 mRNA in the brown adipose tissue during cold acclimation by Northern blotting analysis. The expression of FGF-16 mRNA was not increased, but rather decreased. The expression profile of FGF-16 mRNA and the mitogenic activity of FGF-16 reported here indicate that FGF-16 is a unique growth factor involved in proliferation of embryonic brown adipose tissue.  相似文献   

10.
Acidic fibroblast growth factor (FGF) from bovine brain has been isolated by a combination of salt precipitation, ion-exchange chromatography, heparin-Sepharose affinity chromatography and reverse phase h.p.l.c. The amino acid composition of the mitogen is indistinguishable from that of acidic FGF previously purified. The amino-terminal sequence of acidic FGF was established as Phe-Asn-Leu- Pro-Gly-Asn-Tyr-Lys-Pro-Lys-Leu-X-Tyr-X-Ser-Asn-Gly-X-Tyr-Phe-Leu-Arg-Il e-Leu-Pro-Asp-Gly. Acidic FGF is structurally different from basic FGF as judged by mol. wt., amino acid composition and sequence. In vitro biological comparison of the two growth factors indicates that acidic and basic FGFs possess the same intrinsic activities to stimulate the proliferation of aorta, vein or capillary endothelial cells and adrenal cortex cells, but acidic FGF is 30-100 times less potent, depending on the cell type.  相似文献   

11.
Angiogenic factors, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF), and their receptors, are strongly regulated during the development of bovine corpus luteum (CL). The aim of this study was to investigate real-time changes of these factors in luteal tissue of cows (n = 4-5 per group) in the mid-luteal phase (day 8-12) after intramuscular injection of the PGF2alpha-analog Cloprostenol. Before (control) and 2, 4, 12, 48, and 64 hr after prostaglandin (PG) injection, CL were collected by transvaginal ovariectomy. RT-PCR for VEGF, VEGF-receptor type 1 (VEGF-R1), VEGF-R2, acidic FGF (FGF-1), basic FGF (FGF-2), and FGF-receptor (FGF-R) was performed. Additionally, the protein concentration for VEGF was determined. The mRNA expression of VEGF and its two receptors (VEGF-R1 and -R2) was significantly downregulated during structural luteolysis (after 12 hr). VEGF protein concentration already significantly declined 2 hr after PGF2alpha. Surprisingly FGF-1 and FGF-2 were significantly and maximally upregulated during functional luteolysis (until 12 hr). Furthermore, FGF-R mRNA was significantly upregulated at 2 hr after PGF2alpha, when compared with the control group. During structural luteolysis, the expression of FGFs and their receptors was not significantly different from control, except FGF-2 mRNA, which was downregulated at 64 hr. We conclude that the cessation of VEGF-support for the CL plays a role during structural luteolysis, whereas FGFs seem to have a major impact on functional luteolysis. The possible role of these growth factors could be a transient counter-regulation of luteolysis, but also an involvement in preventing inflammatory reactions during luteal regression.  相似文献   

12.
It has been demonstrated that fibroblast growth factor receptors are key regulators of endochondral bone growth. However, it has not been determined what fibroblast growth factor ligand(s) (FGFs) are important in this process. This study sought to determine whether FGFs 1, 2, 4, 5, 6, 7, 8, 9, and 10 were capable of stimulating avian chondrocyte proliferation in vitro. We have found that FGFs 2, 4, and 9 strongly stimulate avian chondrocyte proliferation while FGFs 6 and 8 stimulate proliferation to a lesser extent. RT-PCR indicates that FGF-2 and FGF-4 are expressed in the postnatal avian epiphyseal growth plate (EGP) while FGF-8 and FGF-9 are not. Thus, FGF-2 and FGF-4 stimulate chondrocyte proliferation and are both present in the EGP. This suggests that FGF-2 and FGF-4 may be important ligands, in vivo, for the regulation of endochondral bone growth. These observations coupled with our observation that multiple avian FGF receptors (Cek1, Cek2, Cek3, and FREK) are expressed in proliferative chondrocytes highlights the complexity of FGF signaling pathways in postnatal endochondral bone growth.  相似文献   

13.
Although the angiogenic proteins acidic fibroblast growth factor (FGF-1) and basic fibroblast growth factor (FGF-2) both interact with the transition metal copper, itself a putative modulator of angiogenesis, a role for copper in FGF function has not been established. Using nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we detect the complete conversion of recombinant forms of human FGF-1 monomer protein to FGF-1 homodimers after exposure to copper ions. In contrast, not all forms of bovine FGF-1 isolated from bovine brain or a recombinant preparation of human FGF-2 completely formed homodimers after exposure to copper ions under similar conditions. Since the copper-induced FGF-1 homodimers reverted to the monomer form in the presence of dithiothreitol, specific alkylation of cysteine residues by pyridylethylation prevented FGF-1 homodimer formation, and preformed FGF-1 homodimers could not be dissociated by the metal chelator EDTA, FGF-1 dimer formation appeared to result from the formation of intermolecular disulfide bonds by copper-induced oxidation of sulfhydryl residues. FGF-1 homodimers bound with similar apparent affinity as FGF-1 monomers to immobilized copper ions, both eluting at 60 mM imidazole. Both human FGF-1 monomer and dimer forms had a 6-fold higher apparent affinity for immobilized copper ions, as compared with human FGF-2, which eluted in the monomer form at 10 mM imidazole. Further, in contrast to FGF-1 monomers, which dissociate from immobilized heparin in 1.0 M NaCl, preformed FGF-1 homodimers had reduced apparent affinity for immobilized heparin and eluted at 0.4 M NaCl. In contrast, the apparent affinity of human FGF-2 for immobilized heparin was unaffected after exposure to copper ions. Heparin appeared to modulate the formation of copper-induced intermolecular disulfide bonds for FGF-1 but not FGF-2, since co-incubation of heparin and copper with FGF-1 monomers resulted in dimers and other oligomeric complexes. FGF-1 copper-induced homodimers failed to induce mitogenesis in [3H]thymidine incorporation assays, an effect which could be reversed by treatment with dithiothreitol, whereas FGF-2-induced mitogenic activity was relatively unaffected by pretreatment with copper. The differences between human FGF-1 and FGF-2 in protein-copper interactions may be due to differing free thiol content and arrangement between the two proteins. A recombinant human FGF-1 mutant containing the two cysteines conserved throughout the FGF family of proteins but lacking a cysteine residue (Cys 131) present in wild-type human FGF-1 but not human FGF-2 readily formed copper-induced dimers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Despite being widely recognized as the important bone-derived phosphaturic hormone, whether fibroblast growth factor (FGF)-23 modulated intestinal calcium absorption remained elusive. Since FGF-23 could reduce the circulating level of 1,25-dihydroxyvitamin D? [1,25(OH)?D?], FGF-23 probably compromised the 1,25(OH)?D?-induced intestinal calcium absorption. FGF-23 may also exert an inhibitory action directly through FGF receptors (FGFR) in the intestinal cells. Herein, we demonstrated by Ussing chamber technique that male mice administered 1 μg/kg 1,25(OH)?D? sc daily for 3 days exhibited increased duodenal calcium absorption, which was abolished by concurrent intravenous injection of recombinant mouse FGF-23. This FGF-23 administration had no effect on the background epithelial electrical properties, i.e., short-circuit current, transepithelial potential difference, and resistance. Immunohistochemical evidence of protein expressions of FGFR isoforms 1-4 in mouse duodenal epithelial cells suggested a possible direct effect of FGF-23 on the intestine. This was supported by the findings that FGF-23 directly added to the serosal compartment of the Ussing chamber and completely abolished the 1,25(OH)?D?-induced calcium absorption in the duodenal tissues taken from the 1,25(OH)?D?-treated mice. However, direct FGF-23 exposure did not decrease the duodenal calcium absorption without 1,25(OH)?D? preinjection. The observed FGF-23 action was mediated by MAPK/ERK, p38 MAPK, and PKC. Quantitative real-time PCR further showed that FGF-23 diminished the 1,25(OH)?D?-induced upregulation of TRPV5, TRPV6, and calbindin-D(9k), but not PMCA(1b) expression in the duodenal epithelial cells. In conclusion, besides being a phosphatonin, FGF-23 was shown to be a novel calcium-regulating hormone that acted directly on the mouse intestine, thereby compromising the 1,25(OH)?D?-induced calcium absorption.  相似文献   

15.
16.
The heparin-binding growth factors include a family of seven structurally related proteins that can potentially interact with four known high affinity receptors. We have cloned the murine homologues of fibroblast growth factor receptors 1 and 3 (mFR1 and mFR3). To define the ligand specificity of these receptors, we have characterized their binding properties with respect to acidic and basic fibroblast growth factors (aFGF and bFGF, respectively) and their biologic activity with respect to aFGF, bFGF, FGF-4/K-FGF, and FGF-5. Unlike mFR1, which binds both aFGF and bFGF, mFR3 preferentially binds aFGF. mFR3-mediated mitogenicity also favors aFGF and FGF-4 with a 10-12-fold lower response to bFGF and no response to FGF-5. Both receptor binding and growth factor-mediated mitogenicity are dependent on heparin. Heparin-binding growth factor activity can thus be regulated by proteoglycans and by the type of FGF receptor expressed on the target cell.  相似文献   

17.
Fibroblast growth factor-binding proteins (FGF-BP) are secreted carrier proteins that release fibroblast growth factors (FGFs) from the extracellular matrix storage and thus enhance FGF activity. Here we have mapped the interaction domain between human FGF-BP1 and FGF-2. For this, we generated T7 phage display libraries of N-terminally and C-terminally truncated FGF-BP1 fragments that were then panned against immobilized FGF-2. From this panning, a C-terminal fragment of FGF-BP1 (amino acids 193-234) was identified as the minimum binding domain for FGF. As a recombinant protein, this C-terminal fragment binds to FGF-2 and enhances FGF-2-induced signaling in NIH-3T3 fibroblasts and GM7373 endothelial cells, as well as mitogenesis and chemotaxis of NIH-3T3 cells. The FGF interaction domain in FGF-BP1 is distinct from the heparin-binding domain (amino acids 110-143), and homology modeling supports the notion of a distinct domain in the C terminus that is conserved across different species. This domain also contains conserved positioning of cysteine residues with the Cys-214/Cys-222 positions in the human protein predicted to participate in disulfide bridge formation. Phage display of a C214A mutation of FGF-BP1 reduced binding to FGF-2, indicating the functional significance of this disulfide bond. We concluded that the FGF interaction domain is contained in the C terminus of FGF-BP1.  相似文献   

18.
19.
We have previously shown that systemic injection of (-)nicotine produces a selective up-regulation of fibroblast growth factor (FGF)-2 mRNA levels in rat striatum. Because (-)nicotine can increase striatal release of dopamine and glutamate, in the present study we have investigated the contribution of these neurotransmitters in the modulation of FGF-2 expression. We found that coinjection of dopaminergic D1 (SCH23390) or D2 (haloperidol) receptor antagonists prevents nicotine-induced elevation of FGF-2 expression. However, injection of the NMDA receptor antagonist MK-801 produced a significant increment of FGF-2 mRNA and protein levels in rat striatum similar to the effect produced by (-)nicotine alone. Interestingly this effect of MK-801 could also be prevented by D1 or D2 receptor antagonists, suggesting that an elevation of dopamine levels may be required for the regulation of the trophic molecule. Accordingly we found that the non-selective dopaminergic agonist apomorphine can similarly increase striatal FGF-2 mRNA levels. Despite the observation that both D1 and D2 receptors appear to contribute to the modulation of FGF-2 expression, only a direct activation of D2 receptors, through quinpirole administration, was able to mimic the effect of apomorphine. On the basis of FGF-2 neurotrophic activity, these results suggest that direct or indirect activation of dopaminergic system can be neuroprotective and might reduce cell vulnerability in degenerative disorders.  相似文献   

20.
The homeostasis of the plasma phosphate level is essential for many biological processes including skeletal mineralization. The reabsorption of phosphate in the kidney is a major determinant of the plasma levels of phosphate. Phosphatonin is a hormone-like factor that specifically inhibits phosphate uptake in renal proximal epithelial cells. Recent studies on tumor-induced osteomalacia suggested that phosphatonin was potentially identical to fibroblast growth factor (FGF)-23. However, as purified recombinant FGF-23 could not inhibit phosphate uptake in renal proximal epithelial cells, the mechanism of action of FGF-23 remains to be elucidated. Therefore, we examined the mechanism of action of FGF-23 in cultured renal proximal epithelial cells, opossum kidney cells. FGF-23 was found to require heparin-like molecules for its inhibitory activity on phosphate uptake. FGF-23 binds to the FGF receptor 3c, which is mainly expressed in opossum kidney cells, with high affinity. An inhibitor for tyrosine kinases of the FGF receptor, SU 5402, blocked the activity of FGF-23. FGF-23 activated the mitogen-activated protein kinase (MAPK) pathway, which is the major intracellular signaling pathway of FGF. Inhibitors of the MAPK pathway, PD98059 and SB203580, also blocked the activity of FGF-23. The present findings have revealed a novel MAPK-dependent mechanism of the regulation of phosphate uptake by FGF signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号