首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between transmural potential difference (PD) and smooth muscle electrical and mechanical activity was investigated in the rabbit ileum in vitro. Transmural PD was monitored using agar salt bridge electrodes connected via calomel half cells to an electrometer. Force displacement transducers recorded predominantly longitudinal smooth muscle activity. Concurrently, predominantly circular muscle activity was recorded at three sites using intraluminal pressure probes. At the same sites, suction electrodes monitored electrical activity of the smooth muscle. In all experiments, fluctuations in transmural PD were temporally linked to smooth muscle mechanical and electrical activity. The frequency of PD oscillations, electrical slow waves, and cyclic pressure changes were identical within each segment. Adrenaline abolished smooth muscle electrical spiking, all mechanical activity, and transmural fluctuations in PD. However, the slow waves were not abolished, though their frequency was increased. Phentolamine but not propranolol reversed the effects of adrenaline, thus slow wave frequency is influenced by alpha-adrenergic stimulation in the rabbit ileum. In conclusion, oscillations in transmural PD are unrelated to the ionic processes associated with the slow wave. However, they are in some way linked to smooth muscle contractile activity, possibly via an intrinsic neural mechanism as observed in the guinea pig.  相似文献   

2.
The motor pattern of the small intestine of the sheep fed ad libitum is characterized by the regular occurrence of myoelectric complexes comprising a phase of regular and irregular spiking activities. Each complex is propagated along the ovine small intestine at a mean velocity of 17 cm/min and originated on the duodenal bulb at 70-100 mn intervals. Reduction and increase in duration of the phase of irregular spiking activity of the complex occurred during fasting and overfeeding respectively. Reduction in spiking activity is paralleled by an increased velocity of propagation whilst a lower migration and a reduced number of the complexes are characteristic of overfeeding. It is concluded that duration, number and velocity of propagation of the myoelectric complexes are adaptative factors in changes of the intestinal flow rate.  相似文献   

3.

A successful preparation has been devised for maintaining the octopus brain in a viable condition to allow microelectrode studies of individual nerve cells. Impalements of cells within the sub‐oesophageal mass reveal that three populations of neurones are present These have different resting potentials, ranging from approximately 60 mV down to under 30 mV. Spontaneous activity is recorded from many neurones but some are silent and others exhibit only synaptic noise. Electrical stimulation of silent cells may lead to no response (large resting potential cells) or provoke trains of impulses (30–45 mV cells). Typical action potentials have durations of 20 msec. IPSP and EPSP activity may be observed. Burster cells or oscillators are located in one specific region, and a variety of activity may be recorded. These periodic bursts may be modified by hyperpolarisation so that spiking ceases but the underlying oscillatory potential remains. Some units exhibit two spike sizes, often uncorrelated in discharge.  相似文献   

4.
The aim of the present study was to examine the vagal control of motor activity and transmural potential difference in the anaesthetized ferret jejunum and ileum in vivo. The data suggest that in the jejunum fluctuations in transmural potential difference occur secondary to spontaneous bursts of contractions and both are controlled by activity in the vagus nerve. However, in the ileum, spontaneous contractile activity and transmural potential difference are not under the tonic influence of the vagus nerve, although transmural potential difference may be under tonic sympathetic control. Furthermore, it appears that vagally induced motor activity and transmural potential difference responses are independent phenomena. Finally the changes in transmural potential difference and the long latency motor responses to vagal nerve stimulation in the small intestine of the ferret are mediated at least in part by noncholinergic transmitters.  相似文献   

5.
Four calves were equipped with an electromagnetic flow probe inside the transverse duodenum and with electrodes at intervals of 2 cm on either side of the probe. Amounts of 0.5, 2.0, 3.5, and 5.0 kg of whole milk were given according to a latin square design. Recordings of digesta flow and myoelectric activity were made during a 5.6-h period after feeding to quantify the influence of migrating myoelectric complexes on digesta flow through the transverse duodenum of preruminant calf under different levels of milk intake. Immediately after feeding, a phase of irregular spiking activity appeared; its length increasing linearly (p = 0.002) with the amount of milk fed. Increasing milk intake led to linear increases in duration (p = 0.001) and total electrical activity (p = 0.002) of the irregular activity phases, quadratic shortening of the quiescent phases (p = 0.021), and linear decrease (p = 0.006) in the numbers of migrating myoelectric complexes. Intermittent flows of digesta, each of them corresponding to a strong spike burst, appeared during irregular spiking activity phases. Augmentation of the milk ingested did not affect the volume of each gush of digesta but caused a cubic increase in the number of gushes (p = 0.023) and in the total volume of digesta (p = 0.009). These cubic effects implied that with increased intake of milk, the duodenum endeavoured to accelerate the flow of digesta in an attempt to return to an "empty state" in about the same time for all levels of milk consumed. This was achieved mainly through adjustments in the duration and activity of the irregular spiking activity phase.  相似文献   

6.
7.
Summary Intracellular studies on photoreceptors in the eyes of the giant clamTridacna give evidence for two types of light-sensitive cells, both of which are hyperpolarized by light. These cells are distinguished by the presence or absence of spikes and corresponding characteristics of the receptor potential. In non-spiking (NS) receptors, the average resting potential in the dark is low (-15 mV) and peak receptor potentials are large (to 100 mV) and adapt rapidly to light. Spiking (S) receptors have higher average resting potentials (-45 mV), but receptor potentials do not exceed 20 mV and also do not adapt to light. The spikes in S-receptors are small (3–8 mV), occur spontaneously at low levels of illumination and are inhibited by light. Bursts of spikes arise on the repolarizing off-component of the receptor potential. Light adaptation increases the excitability of S-receptors in terms of a higher frequency and shorter latency of the off response burst. The receptor potential in both cells is due to a light-activated increase in membrane conductance to potassium ions. Membrane conductance decreases in NS-receptors in relation to light adaptation. Unlike the scallop eye, no depolarizing photoreceptors are present.Abbreviations NS non-spiking photoreceptors - S spiking photoreceptors - SW seawater  相似文献   

8.
Relationships between the basic motor patterns of the small bowel, i.e. the occurrence at hourly intervals of myoelectric complexes and absorption of glucose were studied in vivo on 2-m length ovine jejunum isolated loops by means of the "perfusion marker" technique. For a mean flow rate of about 480 ml/h, the net glucose movement during queiscence was decrease at the occurrence of the phase of irregular spiking activity (ISA) and increased during the phase of regular spiking activity (RSA) of the myoelectric complex. When the flow rate was nearly halved (225 ml/h), the net absorption of glucose was decreased at the occurrence of the phases of either ISA or RSA of the complexes.  相似文献   

9.
The mechanisms of three types of hyperpolarizing electrogenesis in hamster submandibular ganglion cells were analyzed with intracellular microelectrodes. These included (1) spike-induced hyperpolarizing afterpotential (S-HAP), (2) spontaneous transient hyperpolarizing potential (HP), and (3) the hyperpolarizing (H) phase of postsynaptic potential (PSP). Most of these hyperpolarizing potentials were due to conductance increases and reversed polarity at membrane potential (Em) between -70 and -85 mV, which was close to the K-equilibrium potential. The average resting potential of ganglion cells was -53 mV. Action potential overshoot increased slightly in high [Ca2+]0 and decreased in low [Ca2+]0. In most neurons action potentials were completely suppressed by 10(-7)-M tetrodotoxin (TTX). The S-HAP has an initial component due to delayed rectification and a late component. The late component is enhanced by increasing [Ca2+]0, or by applying Ca-ionophore (A23187), TEA, caffeine, or dibutyryl cyclic (DBc-) AMP; it is suppressed by decreasing [Ca2+]0, or by applying Mn2+. Perfusion with Cl--free saline reduced membrane potential slightly but did not modify the S-HAP. Depolarizing pulses also induced hyperpolarizing afterpotential (D-HAP), similar to the S-HAP. Spontaneous transient HPs occurred in some neurons at irregular intervals. HPs were insensitive to TTX but were suppressed by Mn2+. Caffeine induced low frequency rhythmic HPs in many neurons, often alternating with periods of repetitive spiking. The PSP was a monophasic depolarizing (D-) potential in some neurons, but in others the D-phase was followed by a small H-phase. Perfusion with A23187, caffeine or DBc-AMP increased the H-phase of the PSP. Perfusion with K+-free saline or treatment with 10(-5)M ouabain did not abolish the H-phase of PSPs. These membrane potential-dependent phenomena appear to be induced mainly by Ca-mediated K-conductance increases. This mechanism contributes to the regulation of low-frequency repetitive firing in submandibular ganglion cells.  相似文献   

10.
11.
In awake animals, the cerebral cortex displays an "activated" state, with distinct characteristics compared to other states like slow-wave sleep or anesthesia. These characteristics include a sustained depolarized membrane potential (V(m)) and irregular firing activity. In the present paper, we evaluate our understanding of cortical activated states from a computational neuroscience point of view. We start by reviewing the electrophysiological characteristics of activated cortical states based on recordings and analysis performed in awake cat association cortex. These analyses show that cortical activity is characterized by an apparent Poisson-distributed stochastic dynamics, both at the single-cell and population levels, and that single cells display a high-conductance state dominated by inhibition. We next overview computational models of the "awake" cortex, and perform the same analyses as in the experiments. Many properties identified experimentally are indeed reproduced by models, such as depolarized V(m), irregular firing with apparent Poisson statistics, and the determinant role of inhibitory fluctuations on spiking. However, other features are not well reproduced, such as firing statistics and the conductance state of the membrane, suggesting that the network state displayed by models is not entirely correct. We also show how networks can approach a correct conductance state, suggesting ways by which future models will generate activity fully consistent with experimental data.  相似文献   

12.
During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1.  相似文献   

13.
In 5 conscious piglets with implanted electrodes in the antrum pylori, duodenum, jejunum and ileum, electromyographic activity was recorded daily on a multichannel recorder with a time constant of 0.03 s for intestinal and of 1 s for gastric recordings, and simultaneously integrated at 20 s intervals. PGE2 was infused for 2 h in relatively low doses of 0.1 and 1 microgram/kg/min, to avoid excessive hypersecretion, which would disguise direct effects. Each dose was tested once in each animal with a 1 week interval. Infusion of 0.1 microgram/kg/min revealed no significant changes in antral and small intestinal electrical activity. One microgram/kg/min however induced a strong depression of fast oscillations until the end of the infusion and prolongation of the inhibitory phase in the antrum following a duodenal phase of regular spiking activity. Intestinal segments displayed a prolongation of the quiescent phase and a decrease in the integrated area curve of the phase of irregular spiking activity. Recurrence of the phase of regular spiking activity was unaltered in either segment. These data suggest that the direct effect of PGE2 on gastrointestinal motility in the piglet is a partial inhibition of intestinal contractions.  相似文献   

14.
Crucial for survival, the central nervous system must reliably process sensory information over all stages of a hibernation bout to ensure homeostatic regulation is maintained and well-matched to dramatically altered behavioral states. Comparing neural responses in the nucleus tractus solitarius of rats and euthermic Syrian hamsters, we tested the hypothesis that hamster neurons have adaptations sustaining signal processing while conserving energy. Using patch-clamp techniques, we classified second-order neurons in the nucleus as rapid-onset or delayed-onset spiking phenotypes based on their spiking onset to a depolarizing pulse (following a −80 mV prepulse). As temperature decreased from 33 to 15°C, the excitability of all neurons decreased. However, hamster rapid-onset spiking neurons had the highest spiking response and shortest action potential width at every temperature, while hamster delayed-onset spiking neurons had the most negative resting membrane potential. The frequency of spontaneous excitatory postsynaptic currents in both phenotypes decreased as temperature decreased, yet the amplitudes of tractus solitarius stimulation-evoked currents were greater in hamsters than in rats regardless of phenotype and temperature. Changes were significant (P < 0.05), supporting our hypothesis by showing that, as temperature falls, rapid-onset neurons contribute more to signal processing but less to energy conservation than do delayed-onset neurons.  相似文献   

15.
How spiking neurons cooperate to control behavioral processes is a fundamental problem in computational neuroscience. Such cooperative dynamics are required during visual perception when spatially distributed image fragments are grouped into emergent boundary contours. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity occur in response to binary spikes with irregular timing across many interacting cells. Some models have demonstrated spiking dynamics in recurrent laminar neocortical circuits, but not how perceptual grouping occurs. Other models have analyzed the fast speed of certain percepts in terms of a single feedforward sweep of activity, but cannot explain other percepts, such as illusory contours, wherein perceptual ambiguity can take hundreds of milliseconds to resolve by integrating multiple spikes over time. The current model reconciles fast feedforward with slower feedback processing, and binary spikes with analog network-level properties, in a laminar cortical network of spiking cells whose emergent properties quantitatively simulate parametric data from neurophysiological experiments, including the formation of illusory contours; the structure of non-classical visual receptive fields; and self-synchronizing gamma oscillations. These laminar dynamics shed new light on how the brain resolves local informational ambiguities through the use of properly designed nonlinear feedback spiking networks which run as fast as they can, given the amount of uncertainty in the data that they process.  相似文献   

16.
Summary Electrical membrane properties of solitary spiking cells during newt (Cynops pyrrhogaster) retinal regeneration were studied with whole-cell patch-clamp methods in comparison with those in the normal retina.The membrane currents of normal spiking cells consisted of 5 components: inward Na+ and Ca++ currents and 3 outward K+ currents of tetraethylammonium (TEA)-sensitive, 4-aminopyridine (4-AP)-sensitive, and Ca++-activated varieties. The resting potential was about -40mV. The activation voltage for Na+ and Ca++ currents was about -30 and -17 mV, respectively. The maximum Na+ and Ca++ currents were about 1057 and 179 pA, respectively.In regenerating retinae after 19–20 days of surgery, solitary cells with depigmented cytoplasm showed slowrising action potentials of long duration. The ionic dependence of this activity displayed two voltage-dependent components: slow inward Na+ and TEA-sensitive outward K+ currents. The maximum inward current (about 156 pA) was much smaller than that of the control. There was no indication of an inward Ca++ current.During subsequent regeneration, the inward Ca++ current appeared in most spiking cells, and the magnitude of the inward Na+, Ca++, and outward K+ currents all increased. By 30 days of regeneration, the electrical activities of spiking cells became identical to those in the normal retina. No significant difference in the resting potential and the activation voltage for Na+ and Ca++ currents was found during the regenerating period examined.  相似文献   

17.
18.
In this study the relative ionic permeabilities of the cell membranes of Necturus gallbladder epithelium have been determined by means of simultaneous measurement of transmural and transmucosal membrane potential differences (PD) and by ionic substitution experiments with sodium, potassium and chloride ions. It is shown that the mucosal membrane is permeable to sodium and to potassium ions. The baso-lateral membrane PD is only sensitive to potassium ions. In both membranes chloride conductance is negligible or absent. The ratio of the resistances of the mucosal and baso-lateral membranes, RM/RS, increases upon reducing the sodium concentration in the mucosal solution. The same ratio decreases when sodium is replaced by potassium which implies a greater potassium than sodium conductance in the mucosal membrane. The relative permeability of the shunt for potassium, sodium and chloride ions is: PK/PNa/PCl=1.81:1.00:0.32. From the results obtained in this study a value for the PK/PNa ratio of the mucosal membrane could be evaluated. This ratio is 2.7. From the same data the magnitude of the electromotive forces generated across the cell membranes could be calculated. The EMF's are -15mV across the mucosal membrane and -81mV across the baso-lateral one. Due to the presence of the low resistance shunt the transmucosal membrane PD is -53.2mV (cell inside negative) and the transmural PD is +2.6mV (serosal side positive). The change in potential profile brought about by the low resistance shunt favors passive entry of Na ions into the cell across the mucosal membrane. Calculations show that this passive Na influx is maximally 64% of the net Na flux estimated from fluid transport measurements. The C-1 conductive of the baso-lateral membrane is too small to allow electrogenic coupling of C1 with Na transport across this membrane. Experiments with rabbit gallbladder epithelium indicate that the membrane properties in this tissue are qualitatively similar to those of Necturus gallbladder epithelium.  相似文献   

19.
成年蜜蜂脑神经细胞的培养和电生理特征   总被引:1,自引:0,他引:1  
为了研究杀虫剂等对蜜蜂毒性作用的神经机制,需在体外建立成年蜜蜂脑神经细胞的分离培养和电生理记录技术并研究其正常电生理特征,而对成年蜜蜂脑神经细胞的分离培养和电生理特性的研究报道甚少。我们采用酶解和机械吹打相结合的方法获得了数量较多且活力较好的成年意大利蜜蜂Apis mellifera脑神经细胞,并用全细胞膜片钳技术研究了成年意大利蜜蜂脑神经细胞对电流和电压刺激的反应,获得了成年意蜂脑神经细胞的基本电生理特征以及钠电流和钾电流的特性。全细胞电流钳的记录结果表明,在体外培养条件下,细胞无自发放电发生,注射电流后仅引起细胞单次放电,引起细胞放电的阈电流平均为60.8±63 pA; 细胞动作电位产生的阈电位平均为−27.4±2.3 mV。用全细胞电压钳记录了神经细胞的钠电流和钾电流。钠电流的分离是在电压刺激下通过阻断钾通道和钙通道实现。细胞的内向钠电流在指令电压为−40~−30 mV左右激活,−10 mV达峰值,钠通道的稳态失活电压V1/2为−58.4 mV; 外向钾电流成份至少包括较小的快速失活钾电流和和较大的缓慢失活钾电流(占总钾电流的80%),其半激活膜电位V1/2为3.86 mV,无明显的稳态失活。结果提示缓慢失活钾电流的特征可能是细胞单次放电的机制之一。  相似文献   

20.
Electroporation induced by high-strength electrical fields has long been used to investigate membrane properties and facilitate transmembrane delivery of molecules and genes for research and clinical purposes. In the heart, electric field-induced passage of ions through electropores is a factor in defibrillation and postshock dysfunction. Voltage-clamp pulses can also induce electroporation, as exemplified by findings in earlier studies on rabbit ventricular myocytes: Long hyperpolarizations to ≤-110?mV induced influx of marker ethidium and irregular inward currents that were as large with external NMDG(+) as Na(+). In the present study, guinea pig ventricular myocytes were bathed with NMDG(+), Na(+) or NMDG(+)?+?La(3+) solution (36°C) and treated with five channel blockers. Hyperpolarization of myocytes in NMDG(+) solution elicited an irregular inward current (I (ep)) that reversed at -21.5?±?1.5?mV. In myocytes hyperpolarized with 200-ms steps every 30?s, I (ep) occurred in "episodes" that lasted for one to four steps. Boltzmann fits to data on the incidence of I (ep) per experiment indicate 50% incidence at -129.7?±?1.4?mV (Na(+)) and -146.3?±?1.6?mV (NMDG(+)) (slopes ≈-7.5?mV). I (ep) amplitude increased with negative voltage and was larger with Na(+) than NMDG(+) (e.g., -2.83?±?0.34 vs. -1.40?±?0.22?nA at -190?mV). La(3+) (0.2?mM) shortened episodes, shifted 50% incidence by -35?mV and decreased amplitude, suggesting that it inhibits opening/promotes closing of electropores. We compare our findings with earlier ones, especially in regard to electropore selectivity. In the Appendix, relative permeabilities and modified excluded-area theory are used to derive estimates of electropore diameters consistent with reversal potential -21.5?mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号