首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different laboratory conditions were used to examine the impacts of fluctuating temperature on the development and infectivity of entomopathogenic nematode (EPN) Steinernema carpocaposae A10. Set I experiments focused on the impact of cold stress early in the development cycle. In these studies Galleria mellonella hosts were infected and incubated for 2 days at the control temperature of 23 degrees C and then subjected to lower temperatures of -10, 4, 10 or 14 degrees C, respectively, from days 3 to 36 post-infection (PI). Dissections of infected cadavers indicated arrested development at the adult stage at all lower temperatures tested. Set II experiments examined the impacts of cold stress early in the development followed by a return to 23 degrees C. Hosts were infected and incubated as in Set I and subjected to the same temperatures as above for 7 days, followed by incubation at 23 degrees C until 23 days PI. A limited number of EPN populations were able to complete development at 10 and 14 degrees C though emergent population numbers were significantly lower than those of control infections incubated continuously at 23 degrees C. In Set III experiments, infected hosts were subjected to cold stress later during development starting at day 4 post-infection followed by incubation at the control temperature. Population survival past first and second stage juveniles was reduced by at least 95% or more at the lower temperatures compared with controls. Emergent populations from the Set III cold-stressed hosts were not infectious. These studies may provide insights as to how EPN survive seasonal temperature fluctuations under natural environmental conditions.  相似文献   

2.
The entomopathogenic nematode species Steinernema feltiae and Heterorhabditis bacteriophora were compared for survival and infectivity of infective juveniles (IJ) collected with a standard White trap (i.e., emerging from hosts and accumulating in water) and later applied to sand (treatment A) to IJ allowed to emerge from hosts into sand (treatment C). Percentage IJ survival and infectivity was compared between treatments for S. feltiae IJ that emerged between days 1 to 3 and days 4 to 6. For H. bacteriophora, percentage IJ survival and infectivity was compared between treatments only for infective juveniles that emerged between days 4 to 6. For S. feltiae IJ percentage survival and infectivity decreased with time (P ≤ 0.05) and was greater (P ≤ 0.05) for IJ from treatment C than for IJ from treatment A. For H. bacteriophora IJ percentage survival decreased (P ≤ 0.05) and percentage infectivity increased (P ≤ 0.05) with time. While percent survival was higher (P ≤ 0.05) for treatment C than for A, percent infectivity was not different between treatments.  相似文献   

3.
We examined the influence of insect cadaver desiccation on the virulence and production of entomopathogenic nematodes (EPNs), common natural enemies of many soil-dwelling insects. EPNs are often used in biological control, and we investigated the feasibility of applying EPNs within desiccated insect cadavers. Desiccation studies were conducted using the factitious host, Galleria mellonella (Lepidoptera: Pyralidae, wax moth larvae) and three EPN species (Heterorhabditis bacteriophora ‘HB1’, Steinernema carpocapsae ‘All’, and Steinernema riobrave). Weights of individual insect cadavers were tracked daily during the desiccation process, and cohorts were placed into emergence traps when average mass losses reached 50%, 60%, and 70% levels. We tracked the proportion of insect cadavers producing infective juveniles (IJs), the number and virulence of IJs produced from desiccated insect cadavers, and the influence of soil water potentials on IJ production of desiccated insect cadavers. We observed apparent differences in the desiccation rate of the insect cadavers among the three species, as well as apparent differences among the three species in both the proportion of insect cadavers producing IJs and IJ production per insect cadaver. Exposure of desiccated insect cadavers to water potentials greater than −2.75 kPa stimulated IJ emergence. Among the nematode species examined, H. bacteriophora exhibited lower proportions of desiccated insect cadavers producing IJs than the other two species. Desiccation significantly reduced the number of IJs produced from insect cadavers. At the 60% mass loss level, however, desiccated insect cadavers from each of the three species successfully produced IJs when exposed to moist sand, suggesting that insect cadaver desiccation may be a useful approach for biological control of soil insect pests.  相似文献   

4.
The entomopathogenic nematodes (EPN) Heterorhabditis and Steinernema are widely used for the biological control of insect pests and are gaining importance as model organisms for studying parasitism and symbiosis. In this paper recent advances in the understanding of EPN behavior are reviewed. The “foraging strategy” paradigm (distinction between species with ambush and cruise strategies) as applied to EPN is being challenged and alternative paradigms proposed. Infection decisions are based on condition of the potential host, and it is becoming clear that already-infected and even long-dead hosts may be invaded, as well as healthy live hosts. The state of the infective juvenile (IJ) also influences infection, and evidence for a phased increase in infectivity of EPN species is mounting. The possibility of social behavior - adaptive interactions between IJs outside the host - is discussed. EPNs’ symbiotic bacteria (Photorhabdus and Xenorhabdus) are important for killing the host and rendering it suitable for nematode reproduction, but may reduce survival of IJs, resulting in a trade-off between survival and reproduction. The symbiont also contributes to defence of the cadaver by affecting food-choice decisions of insect and avian scavengers. I review EPN reproductive behavior (including sperm competition, copulation and evidence for attractive and organizational effects of pheromones), and consider the role of endotokia matricida as parental behavior exploited by the symbiont for transmission.  相似文献   

5.
Understanding the desiccation survival attributes of infective juveniles of entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis, is central to evaluating the reality of enhancing the shelf-life and field persistence of commercial formulations. Early work on the structural and physiological aspects of desiccation survival focused on the role of the molted cuticle in controlling the rate of water loss and the importance of energy reserves, particularly neutral lipids. The accumulation of trehalose was also found to enhance desiccation survival. Isolation of natural populations that can survive harsh environments, such as deserts, indicated that some populations have enhanced abilities to survive desiccation. However, survival abilities of EPN are limited compared with those of some species of plant-parasitic nematodes inhabiting aerial parts of plants. Research on EPN stress tolerance has expanded on two main lines: i) to select strains of species, currently in use commercially, which have increased tolerance to environmental extremes; and ii) to utilize molecular information, including expressed sequence tags and genome sequence data, to determine the underlying genetic factors that control longevity and stress tolerance of EPN. However, given the inherent limitations of EPN survival ability, it is likely that improved formulation will be the major factor to enhance EPN longevity and, perhaps, increase the range of applications.  相似文献   

6.
The oriental fruit moth (OFM), Grapholita molesta (Busck), which is among the most important insect pests of peaches and nectarines, has developed resistance to a wide range of insecticides. We investigated the ability of the entomopathogenic nematodes (EPN) Steinernema carpocapsae (Weiser), S. feltiae (Filipjev), S. riobrave (Cabanillas et al.), and Heterorhabditis marelatus (Liu and Berry) to control OFM under laboratory and fruit bin conditions. At a dosage of 10 infective juveniles (IJ)/cm2 in the laboratory, S. carpocapsae caused 63%, S. feltiae 87.8%, S. riobrave 75.6%, and H. marelatus 67.1% OFM mortality. All four nematode species caused significant OFM larval mortality in comparison to the nontreated controls. Steinernema feltiae was used for the bin assays due to the higher OFM mortality it caused than the other tested EPN species and to its ability to find OFM under cryptic environments. Diapausing cocooned OFM larvae in miniature fruit bins were susceptible to IJ of S. feltiae in infested corner supports and cardboard strips. Treatment of bins with suspensions of 10 or 25 S. feltiae IJ/ml water with wetting agent (Silwet L77) resulted in 33.3 to 59% and 77.7 to 81.6% OFM mortality in corner supports and cardboard strips, respectively. This paper presents new information on the use of EPN, specifically S. feltiae, as nonchemical means of OFM control.  相似文献   

7.
The effect of dry conditions on the population dynamics of the entomopathogenic nematode (EPN) Steinernema affine was studied for one month in the exceptionally dry period in the summer of 2003 in the oak wood in the vicinity of Ceské Budejovice, Czech Republic. Soil moisture, soil temperature, and the abundance of suitable insect hosts were monitored. The abundance of infective juveniles (IJs) was correlated with soil moisture and both these values were gradually decreasing during the study period and finally rapidly increased at the end of the investigation. During this period there was a decline in the number of insects suitable as hosts for S. affine, but not in numbers of unsuitable insects. We hypothesise that the observed decrease in IJ numbers was probably caused by the persistence of IJs in host cadavers due to low ambient moisture.  相似文献   

8.
Process-based population models need sound and comprehensive data on an animal's response to climatic factors if they are to function reliably under a wide range of climatic conditions. To this end, different aged egg masses of the livestock tick, Rhipicephalus (Boophilus) microplus, were either desiccated in atmospheres with saturation deficits of 5, 10, 15 or 20 mmHg at 20 or 26 degrees C, or chilled at temperatures of 5, 10 or 14 degrees C with a saturation deficit of 1 mmHg for varying periods. The survival rate of the eggs through to hatching was related to the initial age of the eggs, the severity of the treatments and the duration of exposure. We established a relationship between desiccation and weight loss of eggs and, secondarily between weight loss and mortality. Mortality increased with weight loss until it reached 100% when the weight loss was about 35%. Low temperatures were increasingly detrimental to eggs as they reduced from 14 to 5 degrees C. Freshly laid eggs were more susceptible to both low temperatures and desiccation than were older eggs. Larvae emerging from eggs that were stressed by either cold or desiccation lived for a shorter time under optimal conditions than did larvae from eggs incubated under optimal conditions. Larvae from eggs with the same hatching rate had the same viability, whether the stress was induced by desiccation or low temperatures. Models were developed to describe the dynamics of weight loss of eggs with desiccation, the accumulation of cold stress of the eggs, and their effects on egg survival and larval viability. These data provide a sound basis for the development of predictive models for use under field conditions, although the response of different aged eggs to low temperatures was too variable to allow us to develop an accurate model to describe that relationship. Field models will also need to take diurnal temperature fluctuations into account.  相似文献   

9.
The seasonal dynamics of entomopathogenic nematodes (EPNs) of the genus Steinernema and Heterorhabditis were studied during one season in meadow and oak wood habitats, in the vicinity of Ceské Budejovice, Czech Republic. The influences of soil temperature, moisture, and abundance of suitable hosts on EPN dynamics were investigated. The host range of these nematodes, in both habitats was also observed. A total of four EPN species were found in both habitats. Steinernema affine was the dominant species both in oak wood and in meadow. Additionally, the oak wood habitat was inhabited by S. kraussei and S. weiseri; the meadow habitat by Heterorhabditis bacteriophora. The mean abundance of total EPN community was 28,000ind./m(2) in oak wood and 11,000ind./m(2) in meadow. The seasonal dynamics of entomopathogenic nematodes in both habitats were characterized by high nematode densities in the beginning of the season, followed by a rapid decrease, and then stabilization. EPN abundances did not show any apparent correlation with soil temperature and moisture, but they were negatively correlated with the abundance of suitable insect hosts. Inter- and intraspecific competition for limited nutrients (hosts) probably played a major role in EPN seasonal dynamics. Broad host range of entomopathogenic nematodes in both habitats was predominantly represented by dipteran and coleopteran larvae. Most common hosts belonged to the families Asilidae, Bibionidae, and Empididae (Diptera), as well as Carabidae and Curculionidae (Coleoptera).  相似文献   

10.
The effects of temperature, pH, and NaCl concentrations on the infectivity of zoospores of Leptolegnia chapmanii (Argentine isolate) were determined for Aedes aegypti and Culex pipiens under laboratory conditions. Zoospores of L. chapmanii were infectious at temperatures between 10 and 35 degrees C but not at 5 or 40 degrees C. At the permissive temperatures, mortality rates in young instars were much higher than in older instars and larvae of Ae. aegypti were more susceptible to L. chapmanii than larvae of Cx. pipiens. At 25 degrees C, Ae. aegypti larvae challenged with L. chapmanii zoospores resulted in 100% infection at pH levels ranging from 4 to 10. Larvae of Cx. pipiens exposed to similar pH and zoospore concentrations resulted in increasing mortality rates from 62% to 99% at pH 4 to 7, respectively, and then decreased to 71% at pH 10. Aedes aegypti larvae exposed to L. chapmanii zoospores in NaCl concentrations ranging from 0 to 7 parts per thousand (ppt) at 25 degrees C resulted in 100% mortality while mortality rates for Cx. pipiens decreases from 96% in distilled water to 31.5% in water with 6 ppt NaCl. Control Cx. pipiens larvae died when exposed at a NaCl concentration of 7 ppt. Vegetative growth of L. chapmanii was negatively affected by NaCl concentrations. These results have demonstrated that the Argentinean isolate of L. chapmanii tolerated a wide range of temperatures, pH, and salinity, suggesting that it has the potential to adapt to a wide variety of mosquito habitats.  相似文献   

11.
The construction of artificial seaweed beds in the intertidal zone is a challenge due to extreme levels of physical stress. In order to provide a basis for the construction using the dispersal of microscopic juveniles, a three-way factorial experimental design was used to evaluate the tolerance of Sargassum thunbergii germlings shortly released from fertile thalli to temperature, salinity and desiccation in this study. Results revealed that temperature, salinity and desiccation significantly affected the growth and survival of germlings. Germlings showed rapid growth with relative growth rate (RGR, % day−1) over 16% when cultured at 25 °C and full immersion in normal seawater. Although growths of germlings subjected to moderate conditions were significantly inhibited, RGRs over 13% were obtained. The RGRs of germlings below 10% were observed only at 35 °C and 9 h desiccation treatments. In comparison to growth, survival was less affected by physical stress. Germlings showed low mortalities below 10% under appropriate conditions (25 °C and 30 °C combined with full immersion), and below 60% under moderate conditions, by the end of experiment. However, the mortality rates increased to over 90% under extreme conditions (9 h desiccation and 35 °C combined with full immersion in salinity of 12). These results showed that S. thunbergii germlings had high tolerance to physical stresses. In addition to the main effects, both two-way and three-way interactions between temperature, salinity and desiccation were significant. Based on the magnitude of effect, desiccation was the predominant factor affecting both growth and survival. According to the results, construction of artificial tanks in natural habitat to minimize desiccation may be an effective strategy for S. thunbergii restoration using germlings.  相似文献   

12.
Rearing conditions have been shown to affect several aspects of entomopathogenic nematode biology, including dispersal behavior and infectivity. The present study explores the differences in development rate of Heterorhabditis bacteriophora and Steinernema carpocapsae when infective juveniles (IJ) were collected in water using the standard White trap method vs. natural emergence from cadavers into sand. We exposed Galleria mellonella to IJ entompopathogenic nematodes treated in one of three ways: collected in a White trap, allowed to emerge directly into sand, or collected in a White trap and treated with a cadaver homogenate. When S. carpocapsae IJ were allowed to emerge from cadavers directly into sand and then allowed to infect new hosts, they developed into adults at a faster rate than IJ that were collected with White traps. The difference in development was not due to differential infection rates. No difference in development stages was detected amount the same H. bacteriophora treatments.  相似文献   

13.
Our study describes the basic ecological characteristics of the entomopathogenic nematode Steinernema anatoliense including its response to temperature, moisture, and host range. The effect of temperature and soil moisture on the infection of Galleria mellonella larvae by S. anatoliense was determined. The temperature range for infectivity was greater than that for development. The optimal temperature for infection and development was 25 degrees C. Although S. anatoliense infected the hosts at 10 degrees C, no reproduction occurred at this temperature. This nematode species that was isolated from a cold region of Turkey exhibited warm-adapted temperature characteristics. Optimum water content of the soil for S. anatoliense to infect the host was 10%.  相似文献   

14.
Multiple traits of stress resistance were investigated in the epedaphic springtail Orchesella cincta. Second generation adults from five laboratory populations were compared with respect to resistance to extreme temperatures and desiccation, and traits relevant to climatic adaptation. Populations were collected along a 2000-km latitudinal gradient ranging from Denmark to southern Italy and reared under the same standard laboratory conditions. Traits investigated were resistance to high and low temperature, desiccation resistance, body size and water loss rate (WLR). Results showed genetically based differences in resistance to high and low temperature, desiccation, WLR, water pool and body size between populations. Individuals from the most northern population had the highest desiccation-and cold shock resistance, and the lowest heat shock resistance. Females were significantly more desiccation resistant than males. The results of cold shock resistance showed a positive increase with lowest environmental temperature recorded at the sites of population origin, whereas heat shock resistance showed a positive increase with highest recorded temperature at the sites of population origin. Desiccation resistance increased towards the most southern and northern population, suggesting that both low and high temperature extremes affect desiccation resistance. Body mass, water pool and WLR showed interpopulation as well as sex specific variation. This provides evidence for geographical variation in stress resistance of springtails related to climatic conditions.  相似文献   

15.
Energy metabolism and its relation to survival of the infective juveniles (IJ) of S. carpocapsae under anaerobic and oxygen-deficient conditions were studied by monitoring changes in survival rate, levels of key energy reserve materials, oxygen consumption, and respiratory quotient (RQ). The effects of various factors on the survival of IJ under anaerobic conditions were also investigated. Under anaerobic conditions, the IJ were inactivated but could survive for several days in an immobile state, using the carbohydrate reserves glycogen and trehalose for energy supply. The survival time of IJ was mainly dependent on the availability of energy supply, which, in turn, was influenced by factors such as temperature and metabolic by-products. Surviving, anaerobically incubated IJ fully recovered upon return to aerobic conditions. Recovering IJ were characterized by regaining mobility and restoration of carbohydrate reserves consumed during the anaerobic period. Carbohydrate reserves were restored by conversion from lipid reserves and possibly from anaerobic metabolic by-products. The infectivity of IJ recovered from the anaerobic state was not affected. At 1% oxygen level, IJ were also immobile and mainly depended on carbohydrate reserves for energy supply and the RQ was greater than 1. However, some oxygen was consumed; the survival time of these IJ was shorter than those kept in natural air but longer than those under anaerobic conditions. When IJ were incubated at oxygen levels of 3% to 21%, the RQs were maintained at 0.7 to 0.8. Oxygen consumption rates and the reduction in both mean dry weight and lipid levels were proportional to oxygen levels while the survival time of IJ was inversely proportional to oxygen levels.  相似文献   

16.
Applications of infective juveniles (IJ) of entomopathogenic nematodes (EPN) formulated in pellets are still limited. This is principally due to limited advances in the technology of formulation. We aimed to develop a new method of mechanical formulation through material flow and to analyse its effect on the survival time of encapsulated EPN by varying the granular materials, the components of the aqueous suspension, the age of the nematodes and by applying a surface coating (C) to the pellet. Three-day-old and two-month-old Steinernema glaseri IJ were encapsulated with different proportions of diatomaceous earth (DE) and attapulgite clay (AC). The aqueous suspension containing the nematodes was prepared with double distilled water (DDW), varying proportions of Opuntia ficus-indica mucilage (OM) or gelatin (GL), and a sunflower oil surface treatment. The pellets were stored at an average room temperature of 23 ± 6°C. The best results were obtained with the following proportions: 100DE:0AC and 50DE:50AC, using the OM suspension, three-day-old nematodes and a surface C, which resulted in an average of 14 days survival time. These results confirmed that the nematodes do not die during mechanical encapsulation and that the age of the IJ as well as the loss of moisture during storage at room temperature were the factors that decreased the survival of encapsulated EPN. It was concluded that it is necessary to use neonate IJ and to reduce the moisture transfer rate in the granular structure in order to delay the desiccation of the encapsulated nematodes.  相似文献   

17.
Entomopathogenic nematodes (EPN) frequently kill their host within 1-2 days, and interest in EPN focuses mainly on their lethality. However, insects may take longer to die, or may fail to die despite being infected, but little is known about the effects of EPN infection on insects, other than death. Here we investigate both lethal and sub-lethal effects of infection by two EPN species, Steinernema carpocapsae and Heterorhabditis downesi, on adults of the large pine weevil, Hylobius abietis. Following 12 h nematode-weevil contact in peat, S. carpocapsae killed a significantly higher proportion of weevils (87-93%) than H. downesi (43-57%) at all concentrations tested. Less than 10% of weevils were dead within 2 days, and weevils continued to die for up to 10 days after exposure (LT50 of 3 days or more). In a separate experiment, live weevils dissected 6 days after a 24 h exposure to nematodes on filter paper harbored encapsulated and dead nematodes, showing that weevils could defend themselves against infection. Some live weevils also harbored live nematodes 6 days after they had been removed from the nematode infested medium. Feeding by weevils was not affected by infection with, or exposure to, either species of EPN. We discuss these results in relation to the use of EPN in biological control against H. abietis.  相似文献   

18.
We examined the utility of fluorescent fatty acid analog dyes for labeling larval trematodes to use in experimental infections. Our goals were to identify two dyes that label larval trematodes belonging to the species Maritrema novaezealandensis and Coitocaecum parvum, determine if the dyes influence survival and infectivity of larval trematodes and/or host mortality, and if larval trematodes labeled with alternative dyes could be distinguished post-infection. The two dyes tested, BODIPY FL C12 and BODIPY 558/568 C12, successfully labeled all treated larval trematodes, did not influence cercariae survival or infectivity, and did not influence host mortality in either host-parasite system. All larval parasites were fluorescent and distinguishable after 5 days in amphipod intermediate hosts. In addition, larval Acanthoparyphium sp. were strongly fluorescent with both dyes after 5 weeks within cockle hosts. This method should be extremely useful for experimental studies using trematode-host systems as models for addressing a range of ecological and evolutionary questions.  相似文献   

19.
The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm2); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm2 on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.  相似文献   

20.
The entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema glaseri, and Steinernema feltiae were exposed to freezing while inside their hosts. Survival was assessed by observing live and dead nematodes inside cadavers and by counting the infective juveniles (IJs) that emerged after freezing. We (1) measured the effects of 24h of freezing at different times throughout the course of an infection, (2) determined the duration of freezing entomopathogenic nematodes could survive, (3) determined species differences in freezing survival. Highest stage-specific survival was IJs for S. carpocapsae, and adults for H. bacteriophora. When cadavers were frozen two or three days after infection, few IJs emerged from them. Freezing between five and seven days after infection had no negative effect on IJ production. No decrease in IJ production was measured for H. bacteriophora after freezing. H. bacteriophora also showed improved survival inside versus outside their host when exposed to freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号