首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the functional expression of cystic fibrosis transmembrane conductance regulator (CFTR) with electrophysiological and molecular technique in rat oviduct epithelium. In whole-cell patch clamp, oviduct epithelial cells responded to 100 microM 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) with a rise in inward current in Gap-free mode, which was inhibited successively by 5 microM CFTR(inh)-172, a CFTR specific inhibitor, and 1 mM diphenylamine-2-carboxylate (DPC), the Cl- channel blocker. The cAMP-activated current exhibited a linear current-voltage (I-V) relationship and time- and voltage-independent characteristics. The reversal potentials of the cAMP-activated currents in symmetrical Cl- solutions were close to the Cl- equilibrium, 0.5+/-0.2 mV (n=4). When Cl- concentration in the bath solution was changed from 140 mM to 70 mM and a pipette solution containing 140 mM Cl- was used, the reversal potential shifted to a value close to the new equilibrium for Cl-, 20+/-0.6 mV (n=4), as compared with the theoretic value of 18.7 mV. In addition, mRNA expression of CFTR was also detected in rat oviduct epithelium. Western blot analysis showed that CFTR protein is found in the oviduct throughout the cycle with maximal expression at estrus, and immunofluorescence and immunohistochemistry analysis revealed that CFTR is located at the apical membrane of the epithelial cells. These results showed that the cAMP-activated Cl- current in the oviduct epithelium was characteristic of CFTR, which provided direct evidence for the functional expression of CFTR in the rat oviduct epithelium. CFTR may play a role in modulating fluid transport in the oviduct.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl- channel that is regulated by cAMP-dependent phosphorylation and by intracellular ATP. Intracellular ATP also regulates a class of K+ channels that have a distinct pharmacology: they are inhibited by sulfonylureas and activated by a novel class of drugs called K+ channel openers. In search of modulators of CFTR Cl- channels, we examined the effect of sulfonylureas and K+ channel openers on CFTR Cl- currents in cells expressing recombinant CFTR. The sulfonylureas, tolbutamide and glibenclamide, inhibited whole-cell CFTR Cl- currents at half-maximal concentrations of approximately 150 and 20 microM, respectively. Inhibition by both agents showed little voltage dependence and developed slowly; > 90% inhibition occurred 3 min after adding 1 mM tolbutamide or 100 microM glibenclamide. The effect of tolbutamide was reversible, while that of glibenclamide was not. In contrast to their activating effect on K+ channels, the K+ channel openers, diazoxide, BRL 38227, and minoxidil sulfate inhibited CFTR Cl- currents. Half-maximal inhibition was observed at approximately 250 microM diazoxide, 50 microM BRL 38227, and 40 microM minoxidil sulfate. The rank order of potency for inhibition of CFTR Cl- currents was: glibenclamide < BRL 38227 approximately equal to minoxidil sulfate > tolbutamide > diazoxide. Site-directed mutations of CFTR in the first membrane-spanning domain and second nucleotide-binding domain did not affect glibenclamide inhibition of CFTR Cl- currents. However, when part of the R domain was deleted, glibenclamide inhibition showed significant voltage dependence. These agents, especially glibenclamide, which was the most potent, may be of value in identifying CFTR Cl- channels. They or related analogues might also prove to be of value in treating diseases such as diarrhea, which may involve increased activity of the CFTR Cl- channel.  相似文献   

3.
The endogenous Cl- conductance of Spodoptera frugiperda (Sf9) cells was studied 20-35 h after plating out of either uninfected cells or cells infected by a baculovirus vector carrying the cloned beta-galactosidase gene (beta-Gal cells). With the cation Tris+ in the pipette and Na+ in the bath, the reversal potential of whole-cell currents was governed by the prevailing Cl- equilibrium potential and could be fitted by the Goldman-Hodgkin-Katz equation with similar permeabilities for uninfected and beta-Gal cells. In the frequency range 0.12 < f < 300 Hz, the power density spectrum of whole-cell Cl- currents could be fitted by three Lorentzians. Independent of membrane potential, >50% of the total variance of whole-cell current fluctuations was accounted for by the low frequency Lorentzian (fc = 0.40 +/- 0.03 Hz, n = 6). Single-Cl- channels showed complex gating kinetics with long lasting (seconds) openings interrupted by similar long closures. In the open state, channels exhibited fast burst-like closures. Since the patches normally contained more than a single channel, it was not possible to measure open and closed dwell-time distributions for comparing single-Cl- channel activity with the kinetic features of whole-cell currents. However, the power density spectrum of Cl- currents of cell-attached and excised outside-out patches contained both high and low frequency Lorentzian components, with the corner frequency of the slow component (fc = 0.40 +/- 0.02 Hz, n = 4) similar to that of whole-cell current fluctuations. Chloride channels exhibited multiple conductance states with similar Goldman-Hodgkin-Katz-type rectification. Single-channel permeabilities covered the range from approximately 0.6.10(-14) cm5/s to approximately 6.10(-14) cm3/s, corresponding to a limiting conductance (gamma 150/150) of approximately 3.5 pS and approximately 35 pS, respectively. All states reversed near the same membrane potential, and they exhibited similar halide ion selectivity, P1 > PCl approximately PBr. Accordingly, Cl- current amplitudes larger than current flow through the smallest channel unit resolved seem to result from simultaneous open/shut events of two or more channel units.  相似文献   

4.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl- channel properties, regulates other ion channels. CFTR inhibits murine or rat epithelial Na+ channel (mENaC or rENaC) currents in many epithelial and non-epithelial cells, whereas murine or rat ENaC increases CFTR functional expression. These regulatory interactions are reproduced in Xenopus oocytes where both the open probability and surface expression of wild type CFTR Cl- channels are increased when CFTR is co-expressed with alphabetagamma mENaC, and conversely the activity of mENaC is inhibited after wild type CFTR activation. Using the Xenopus oocyte expression system, differences in functional regulatory interactions were observed when CFTR was co-expressed with either alphabetagamma mENaC or alphabetagamma human ENaC (hENaC). Co-expression of CFTR and alphabetagamma mENaC or hENaC resulted in an approximately 3-fold increase in CFTR Cl- current compared with oocytes expressing CFTR alone. Oocytes co-injected with both CFTR and mENaC or hENaC expressed an amiloride-sensitive whole cell current that was decreased compared with that observed with the injection of mENaC or hENaC alone before CFTR activation with forskolin/3-isobutyl-1-methylxanthine. CFTR activation resulted in a further 50% decrease in mENaC-mediated currents, an approximately 20% decrease in alpha-T663-hENaC-mediated currents, and essentially no change in alpha-A663-hENaC-mediated currents. Changes in ENaC functional expression correlated with ENaC surface expression by oocyte surface biotinylation experiments. Assessment of regulatory interactions between CFTR and chimeric mouse/human ENaCs suggest that the 20 C-terminal amino acid residues of alpha ENaC confer species specificity regarding ENaC inhibition by activated CFTR.  相似文献   

5.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated epithelial Cl- channel that, when defective, causes cystic fibrosis. Screening of a collection of 100,000 diverse small molecules revealed four novel chemical classes of CFTR inhibitors with Ki < 10 microM, one of which (glycine hydrazides) had many active structural analogues. Analysis of a series of synthesized glycine hydrazide analogues revealed maximal inhibitory potency for N-(2-naphthalenyl) and 3,5-dibromo-2,4-dihydroxyphenyl substituents. The compound N-(2-naphthalenyl)-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]glycine hydrazide (GlyH-101) reversibly inhibited CFTR Cl- conductance in <1 min. Whole-cell current measurements revealed voltage-dependent CFTR block by GlyH-101 with strong inward rectification, producing an increase in apparent inhibitory constant Ki from 1.4 microM at +60 mV to 5.6 microM at -60 mV. Apparent potency was reduced by lowering extracellular Cl- concentration. Patch-clamp experiments indicated fast channel closures within bursts of channel openings, reducing mean channel open time from 264 to 13 ms (-60 mV holding potential, 5 microM GlyH-101). GlyH-101 inhibitory potency was independent of pH from 6.5-8.0, where it exists predominantly as a monovalent anion with solubility approximately 1 mM in water. Topical GlyH-101 (10 microM) in mice rapidly and reversibly inhibited forskolin-induced hyperpolarization in nasal potential differences. In a closed-loop model of cholera, intraluminal GlyH-101 (2.5 microg) reduced by approximately 80% cholera toxin-induced intestinal fluid secretion. Compared with the thiazolidinone CFTR inhibitor CFTR(inh)-172, GlyH-101 has substantially greater water solubility and rapidity of action, and a novel inhibition mechanism involving occlusion near the external pore entrance. Glycine hydrazides may be useful as probes of CFTR pore structure, in creating animal models of CF, and as antidiarrheals in enterotoxic-mediated secretory diarrheas.  相似文献   

6.
7.
Halide permeability sequences were obtained from reversal potential measurements of single-channel currents through 10 pS and 20 pS anion channels in human airway epithelial cells. The sequences obtained were Cl- greater than I- greater than Br- greater than or equal to F- for the 10 pS channel and Cl- greater than I- greater than or equal to Br- greater than or equal to F- for the 20 pS channel. However, the permeability differences were not large, the greatest being 0.66 for the ratio of fluoride to chloride permeability in the 20 pS channel. Single-channel currents were also measured with solutions of constant halide concentration but varying ratios of chloride to fluoride ions. An anomalous mole fraction effect was observed for the 20 pS channel but not for the 10 pS channel, suggesting that the former is a multi-ion channel. Comparison of the halide permeability sequences of these two channels with those of whole-cell currents in other epithelial cells does not support their involvement in any of the known whole-cell epithelial currents.  相似文献   

8.
M Sugita  Y Yue    J K Foskett 《The EMBO journal》1998,17(4):898-908
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is regulated by phosphorylation of the R domain and ATP hydrolysis at two nucleotide-binding domains (NBDs). It is controversial whether CFTR conducts ATP or whether CFTR might be closely associated with a separate ATP conductance. To characterize ATP channels associated with CFTR, we analyzed Cl- and ATP single channel-currents in excised inside-out membrane patches from MDCK epithelial cells transiently expressing CFTR. With 100 mM ATP in the pipette and 140 mM Cl- in the bath, ATP channels were associated with CFTR Cl- channels in two-thirds of patches that included CFTR. CFTR Cl- channels and CFTR-associated ATP channels had slope conductances of 7.4 pS and 5.2 pS, respectively, and had distinct reversal potentials and sensitivities to channel blockers. CFTR-associated ATP channels exhibited slow gating kinetics that depended on the presence of protein kinase A and cytoplasmic ATP, similar to CFTR Cl- channels. Gating kinetics of the ATP channels as well as the CFTR Cl- channels were similarly affected by non-hydrolyzable ATP analogues and mutations in the CFTR R domain and NBDs. Our results indicate that phosphorylation- and nucleotide-hydrolysis-dependent gating of CFTR is directly involved in gating of an associated ATP channel. However, the permeation pathways for Cl- and ATP are distinct and the ATP conduction pathway is not obligatorily associated with the expression of CFTR.  相似文献   

9.
The gene defective in cystic fibrosis encodes a Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is blocked by diphenylamine-2-carboxylate (DPC) when applied extracellularly at millimolar concentrations. We studied the block of CFTR expressed in Xenopus oocytes by DPC or by a closely related molecule, flufenamic acid (FFA). Block of whole-cell CFTR currents by bath-applied DPC or by FFA, both at 200 microM, requires several minutes to reach full effect. Blockade is voltage dependent, suggesting open-channel block: currents at positive potentials are not affected but currents at negative potentials are reduced. The binding site for both drugs senses approximately 40% of the electric field across the membrane, measured from the inside. In single-channel recordings from excised patches without blockers, the conductance was 8.0 +/- 0.4 pS in symmetric 150 mM Cl-. A subconductance state, measuring approximately 60% of the main conductance, was often observed. Bursts to the full open state lasting up to tens of seconds were uninterrupted at depolarizing membrane voltages. At hyperpolarizing voltages, bursts were interrupted by brief closures. Either DPC or FFA (50 microM) applied to the cytoplasmic or extracellular face of the channel led to an increase in flicker at Vm = -100 mV and not at Vm = +100 mV, in agreement with whole-cell experiments. DPC induced a higher frequency of flickers from the cytoplasmic side than the extracellular side. FFA produced longer closures than DPC; the FFA closed time was roughly equal (approximately 1.2 ms) at -100 mV with application from either side. In cell-attached patch recordings with DPC or FFA applied to the bath, there was flickery block at Vm = -100 mV, confirming that the drugs permeate through the membrane to reach the binding site. The data are consistent with the presence of a single binding site for both drugs, reached from either end of the channel. Open-channel block by DPC or FFA may offer tools for use with site-directed mutagenesis to describe the permeation pathway.  相似文献   

10.
Y M Bae  K S Kim  J K Park  E Ko  S Y Ryu  H J Baek  S H Lee  W K Ho  Y E Earm 《Life sciences》2001,69(21):2451-2466
The membrane potential in vascular smooth muscle cells contributes to the regulation of cytosolic [Ca2+], which in turn regulates membrane potential by means of Ca2+i-dependent ionic currents. We investigated the characteristics of Ca2+i-dependent currents in rabbit coronary and pulmonary arterial smooth muscle cells. Ca2+i-dependent currents were recorded using the whole-cell patch-clamp technique while cytosolic [Ca2+] was increased by caffeine. The reversal potentials of caffeine-induced currents were between -80 and -10 mV under normal ionic conditions, whereas they were about 0 mV when K+-free NaCl solutions were used both in pipette and bath. The total substitution of extracellular Na+ with membrane-impermeable cation N-Methyl-D-glucamine did not affect caffeine-induced currents, implying no significant contribution of Na+ as a permeant ion to the currents. The substitution of extracellular NaCl with sucrose reduced outward component of the currents and shifted the reversal potentials according to the change in Cl- equilibrium potential. Upon application of the niflumic acid under K+-free conditions, most of the current induced by caffeine was inhibited. Taken together, the results of the present study indicate that K+ and Cl- currents are major components of Ca2+i-dependent currents in vascular smooth muscles isolated from coronary and pulmonary arteries of the rabbit, and the relative contribution of each type of current to total currents are not different between the two arteries.  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl(-) channel properties, regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and nonepithelial cells. Because modulation of net NaCl reabsorption has important implications in extracellular fluid volume homeostasis and airway fluid volume and composition, we investigated whether this regulation was reciprocal by examining whether ENaC regulates CFTR. Co-expression of human (h) CFTR and mouse (m) alphabetagammaENaC in Xenopus oocytes resulted in a significant, 3.7-fold increase in whole-cell hCFTR Cl(-) conductance compared with oocytes expressing hCFTR alone. The forskolin/3-isobutyl-1-methylxanthine-stimulated whole-cell conductance in hCFTR-mENaC co-injected oocytes was amiloride-insensitive, indicating an inhibition of mENaC following hCFTR activation, and it was blocked by DPC (diphenylamine-2-carboxylic acid) and was DIDS (4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid)-insensitive. Enhanced hCFTR Cl(-) conductance was also observed when either the alpha- or beta-subunit of mENaC was co-expressed with hCFTR, but this was not seen when CFTR was co-expressed with the gamma-subunit of mENaC. Single Cl(-) channel analyses showed that both CFTR Cl(-) channel open probability and the number of CFTR Cl(-) channels detected per patch increased when hCFTR was co-expressed with alphabetagammamENaC. We conclude that in addition to acting as a regulator of ENaC, CFTR activity is regulated by ENaC.  相似文献   

12.
13.
14.
F508del is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that is responsible for the genetic disease Cystic Fibrosis (CF). It results in a major failure of CFTR to traffic to the apical membrane of epithelial cells, where it should function as a chloride (Cl-) channel. Most studies on localization, processing and cellular trafficking of wild-type (wt) and F508del-CFTR have been performed in non-epithelial cells. Notwithstanding, polarized epithelial cells possess distinctly organized and regulated membrane trafficking pathways. We have used Madin-Darby canine kidney (MDCK) type II cells (proximal tubular cells which do not express endogenous CFTR) to generate novel epithelial, polarized cellular models stably expressing wt- or F508del-CFTR through transduction with recombinant lentiviral vectors. Characterization of these cell lines shows that wt-CFTR is correctly processed and apically localized, producing a cAMP-activated Cl- conductance. In contrast, F508del-CFTR is mostly detected in itsimmature form, localized intracellularly and producing only residual Cl- conductance. These novel cell lines constitute bona fide models and significantly improved resources to investigate the molecular mechanisms of polarized membrane traffic of wt- and F508del-CFTR in the same cellular background. They are also useful to identify/validate novel therapeutic compounds for CF.  相似文献   

15.
Chloride channels in the small intestinal cell line IEC-18   总被引:1,自引:0,他引:1  
Small intestinal crypt cells play a critical role in modulating Cl- secretion during digestion. The types of Cl- channels mediating Cl- secretion in the small intestine was investigated using the intestinal epithelial cell line, IEC-18, which was derived from rat small intestine crypt cells. In initial radioisotope efflux studies, exposure to forskolin, ionomycin or a decrease in extracellular osmolarity significantly increased 36Cl efflux as compared to control cells. Whole cell patch clamp techniques were subsequently used to examine in more detail the swelling-, Ca2+-, and cAMP-activated Cl- conductance. Decreasing the extracellular osmolarity from 290 to 200 mOsm activated a large outwardly rectifying Cl- current that was voltage-independent and had an anion selectivity of I- > Cl-. Increasing cytosolic Ca2+ by ionomycin activated whole cell Cl- currents, which were also outwardly rectifying but were voltage-dependent. The increase in intracellular Ca2+ levels with ionomycin was confirmed with fura-2 loaded IEC-18 cells. A third type of whole cell Cl- current was observed after increases in intracellular cAMP induced by forskolin. These cAMP-activated Cl- currents have properties consistent with cystic fibrosis transmembrane regulator (CFTR) Cl- channels, as the currents were blocked by glibenclamide or NPPB but insensitive to DIDS. In addition, the current-voltage relationship was linear and had an anion selectivity of Cl- > I-. Confocal immunofluorescence studies and Western blots with two different anti-CFTR antibodies confirmed the expression of CFTR. These results suggest that small intestinal crypt cells express multiple types of Cl- channels, which may all contribute to net Cl- secretion.  相似文献   

16.
P2Y receptor regulation of anion secretion was investigated in porcine endometrial gland (PEG) epithelial cells. P2Y2, P2Y4, and P2Y6 receptors were detected in monolayers of PEG cells and immunocytochemistry indicated that P2Y4 receptors were located in the apical membrane. Apical membrane current measurements showed that Ca2+-dependent and PKC-dependent Cl- channels were activated following treatment with uridine triphosphate (UTP) (5 microM). Current-voltage relationships comparing calcium-dependent and PKC-dependent UTP responses under biionic conditions showed significant differences in selectivity between Cl-)and I- for the PKC-dependent conductance (P(I)/P(Cl) = 0.76), but not for Ca2+-dependent conductance (PI/P(Cl) = 1.02). The I-/Cl- permeability ratio for the PKC-dependent conductance was identical to that measured for 8-cpt cAMP. Furthermore, PKC stimulation using phorbol 12-myristate 13-acetate (PMA) activated an apical membrane Cl- conductance that was blocked by the CFTR selective inhibitor, CFTRinh-172. CFTR silencing, accomplished by stable expression of small hairpin RNAs (shRNA), blocked the PKC-activated conductance associated with UTP stimulation and provided definitive evidence of a role for CFTR in anion secretion. CFTR activation increased the initial magnitude of Cl- secretion, and provided a more sustained secretory response compared to conditions where only Ca2+-activated Cl- channels were activated by UTP. Measurements of [cAMP]i following UTP and PMA stimulation were not significantly different than untreated controls. Thus, these results demonstrate that UTP and PMA activation of CFTR occurs independently of increases in intracellular cAMP and extend the findings of earlier studies of CFTR regulation by PKC in Xenopus oocytes to a mammalian anion secreting epithelium.  相似文献   

17.
Blue light is the primary entrainment signal for a number of developmental and morphological processes in the lower eucaryote Neurospora crassa. Blue light regulates photoactivation of carotenoid synthesis, conidiation, phototropism of perithecia and circadian rhythms. Changes in the electrical properties of the plasma membrane are one of the fastest responses to blue light irradiation. To enable patch-clamp studies on light-induced ion channel activity, the wall-less slime mutant was used. Patch-clamp experiments were complemented by non-invasive ion-selective measurements of light-induced ion fluxes of slime cells using the vibrating probe technique. Blue light usually caused a decrease in conductance within 2-5 minutes at both negative and positive voltages, and a negative shift in the reversal potential in whole-cell patch-clamp measurements. Both K+ and Cl- channels contribute to the inward and outward currents, based on the effects of TEA (10 mM) and DIDS (500 microM). However, the negative shift in the reversal potential indicates that under blue light the Cl- conductance becomes dominant in the electrical properties of the slime cells due to a decrease of K+ conductance. The ion-selective probe revealed that blue light induced the following changes in the net ion fluxes within 5 minutes: 1) decrease in H+ influx; 2) increase in K+ efflux; and 3) increase in Cl- influx. Ca2+ flux was unchanged. Therefore, blue light regulates an ensemble of transport processes: H+, Cl-, and K+ transport.  相似文献   

18.
Ambroxol is often used as a mucolytic agent in various lung diseases. However, it is unclear how ambroxol acts on bronchial epithelial cells. To clarify the action of ambroxol, we studied the effects of ambroxol on the ion transport in human Calu-3 cells, a human submucosal serous cell line, measuring the transepithelial short-circuit current and conductance across monolayers of Calu-3 cells. Ambroxol of 100 microM diminished the terbutaline (a beta2-adrenergic agonist)-stimulated Cl-/HCO3(-)-dependent secretion without any decreases in the conductance of cystic fibrosis transmembrane conductance regulator (CFTR) channel locating on the apical membrane. On the other hand, under the basal (unstimulated) condition ambroxol increased the Cl(-)-dependent secretion with no significant change in the apical CFTR channel conductance and decreased the HCO3- secretion associated with a decrease in the apical CFTR channel conductance. Ambroxol had no major action on the epithelial Na+ channel (ENaC) or the ENaC-mediated Na+ absorption. These results indicate that in Calu-3 cells: (1) under the basal (unstimulated) condition ambroxol increases Cl- secretion by stimulating the entry step of Cl- and decreases HCO3- secretion by diminishing the activity of the CFTR channel and/or the Na+/HCO3(-)-dependent cotransporter, (2) under the adrenergic agonist-stimulated condition, ambroxol decreases Cl- secretion by acting on the Cl-/HCO3- exchanger, and (3) ambroxol has a more powerful action than the adrenergic agonist on the Cl-/HCO3- exchanger, leading fluid secretion to a moderately stimulated level from a hyper-stimulated level.  相似文献   

19.
We studied a chloride (Cl-) conductance activated by calcium (Ca2+) in normal rat lactotrophs and compared its activation during TRH stimulation in normal rat lactotrophs and in GH3 tumoral lactosomatotrophs cells, using the whole-cell configuration of the patch-clamp technique. The Cl- specificity of the conductance was assessed by manipulation of internal and external Cl- concentrations. The reversal potentials were in agreement with those predicted by the Nernst equation. Ca2+ ionophore A23187 and membrane depolarizations activated the Cl- conductance. However, a feedback effect of Cl- gradient modifications on Ca2+ movements was also observed in normal lactotrophs. In the latter, TRH (100 nM) mobilization of intracellular Ca2+ activated this Cl- conductance together with the potassium (K+) conductance when both ions were present in the intracellular medium (IM) or alone when K+ was absent. Chloride conductance was not activated in the GH3 cells, where mobilization of intracellular Ca2+ by TRH (100 nM) activated only Ca2(+)-dependent K+ conductance. It seems likely that the activation of Cl- conductance in these two different cell types involves different mechanisms.  相似文献   

20.
Matrix metalloproteinases (MMPs) are involved in the remodeling and degradation of the extracellular matrix. Recently, it has been found that MMPs also contribute to processes not directly related to tissue remodeling, such as platelet aggregation or degranulation of airway gland cells. Since mucus secretion is closely related to ion channel function, we investigated whether MMPs could also be involved in the regulation of ion channels. We used human airway submucosal cell line Calu-3 to study the effects of MMPs on whole-cell current and transepithelial short-circuit current (I(sc)). Phenanthroline, a specific inhibitor of MMPs, increased whole-cell current with the half-maximally effective dose of 5.2 microM, and reversibly activated I(sc) in transepithelial measurements. Current stimulated by phenanthroline displayed linear current-voltage relationships and had inhibitor pharmacology and ion selectivity consistent with cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity. Zymography and Western blot showed significant expression of MMP-2 in Calu-3 cells. Moreover, anti-MMP-2 antibodies (1 microg/mL) increased whole-cell current and I(sc), whereas human recombinant MMP-2 (10 ng/mL) reduced it. We also studied the expression of MMPs and the effects of phenanthroline on whole-cell current in A549 cells, which are derived from airway surface epithelium and do not express CFTR Cl- channels. While these cells also showed significant expression of MMP-2, inhibition of this enzyme with phenanthroline exerted no significant effect on whole-cell current. It is concluded that MMP-2 is involved in the regulation of CFTR Cl- channels in human airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号