首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

2.
Mouse B16 melanoma extracts of both cultured cells and tumour tissue contain cyclic AMP phosphodiesterase activity, with 95% present in the soluble fraction. Although activation of the enzyme by added calmodulin did not occur, it was found that endogenous calmodulin was present at a level sufficient to activate fully the enzyme. The ability of Ca-calmodulin to stimulate cyclic AMP phosphodiesterase in this tissue was shown by the inhibitory effect of N-(6-aminohexyl)-5-chloronaphthalenesulphonamide (W7), a known calmodulin antagonist; by the activation of the enzyme with exogenous calmodulin observed in supernatants depleted of endogenous calmodulin by passage over fluphenazine-Sepharose 6B in the presence of Ca2+; by the Ca-dependent binding of the enzyme to calmodulin-agarose and its activation by Ca-calmodulin after elution from the column with EGTA-containing buffer. It was calculated that about 50% of the total cyclic AMP phosphodiesterase activity was calmodulin-activated in this tissue.  相似文献   

3.
4.
Acidic phospholipids, unsaturated fatty acids and limited proteolysis mimic the activating effect of calmodulin on erythrocyte Ca2+-transport ATPase and on brain cyclic nucleotide phosphodiesterase, as has been reported previously in several studies. Three different antagonists of calmodulin-induced activation of these enzymes were tested for their inhibitory potency on the stimulation produced by the other activators. Trifluoperazine and penfluridol were found to antagonize all the above mentioned types of activation of Ca2+-transport ATPase in the same concentration range. Both inhibitors also can reverse the activation of phosphodiesterase by oleic acid, phosphatidylserine and calmodulin at similar concentrations. However, in contrast with erythrocyte Ca2+-transport ATPase, activation of phosphodiesterase by limited tryptic digestion cannot be antagonized by penfluridol and trifluoperazine. Calmidazolium, formerly referred to as compound R 24571, was found to be a relatively specific inhibitor of calmodulin-induced activation of phosphodiesterase and Ca2+-transport ATPase, since antagonism of the other activators required much higher concentrations of the drug. The results suggest that the investigated drugs exert their inhibitory effect on calmodulin-regulated enzymes not solely via their binding to calmodulin but may also interfere directly with the calmodulin effector enzyme. In addition, a general mechanism of activation and inhibition of calmodulin-dependent enzymes is derived from our results.  相似文献   

5.
The effects of various lipids on calmodulin interaction with Ca-dependent phosphodiesterase were investigated. Palmitic, myristic and stearic acids increased the enzyme activity; the degree of the enzyme activation by calmodulin was decreased thereby. Oleic acid produced a weak activating effect on phosphodiesterase but completely blocked calmodulin action. The effects of the fatty acids under study were reversible, the activation constant was equal to 10(-4)-5 X 10(-4) M. In the presence of Ca2+ phosphoinositides and fatty acids changed the fluorescence intensity of dansyl-labelled calmodulin; in the absence of Ca2+ the lipids did not affect protein fluorescence. The lipids had no influence on the protein affinity for Ca2+. During chromatography of phosphodiesterase on calmodulin-Sepharose the enzyme was eluted from the column both in the presence of EGTA and palmitic acid. It was concluded that fatty acids prevent the formation of the calmodulin - phosphodiesterase complex. This effects may both be due to the lipid binding to the enzyme and to calmodulin.  相似文献   

6.
Cyclic nucleotide phosphodiesterase activity towards cyclic AMP and cyclic GMP was studied in extracts of rat islets of Langerhans. Biphasic Eadie plots [Eadie (1942) J. Biol. Chem. 146, 85-93] were obtained with either substrate suggesting the presence of both 'high'- and 'low'-Km components. The apparent Km values were 6.2 +/- 0.5 (n = 8) microM and 103.4 +/- 13.5 (6) microM for cyclic AMP and 3.6 +/- 0.3 (12) microM and 61.4 +/- 7.5 (13) microM for cyclic GMP. With cyclic AMP as substrate, phosphodeisterase activity was increased by calmodulin and Ca2+ and decreased by trifluoperazine, a specific inhibitor of calmodulin. With cyclic GMP as substrate, phosphodiesterase activity was decreased by omission of Ca2+ or addition of trifluoperazine. Addition of exogenous calmodulin had no effect on activity. The data suggest that Ca2+ may influence the islet content of cyclic AMP and cyclic GMP via effects on calmodulin-dependent cyclic nucleotide phosphodiesterase(s).  相似文献   

7.
Diagnosis of familial amyloidotic polyneuropathy by recombinant DNA techniques   总被引:17,自引:0,他引:17  
A calmodulin dependent cyclic nucleotide phosphodiesterase is associated with the head and tailpieces of demembranated rat caudal epididymal sperm. The phosphodiesterase was stimulated two-fold in the presence of Ca2+, while the simultaneous addition of Ca2+ and calmodulin resulted in a four-fold increase in activity. Ca2+ stimulation was abolished if demembranated sperm were extracted with EGTA and was recovered upon the addition of exogenous calmodulin. Micromolar levels of Ca2+ were required for full stimulation. Trifluoperazine inhibited the Ca2+ stimulated enzyme in a dose dependent manner (ID50 = 50 microM) but had no effect on the basal phosphodiesterase activity.  相似文献   

8.
We have separated and characterized a Ca2+- and calmodulin-insensitive cyclic nucleotide phosphodiesterase from rat liver supernatant as well as an analogous enzyme from HTC hepatoma cells. Chromatography of rat liver supernatant on DEAE-cellulose in the presence and subsequently in the absence of 0.1 mM-CaCl2 resulted in the separation of two distinct phosphodiesterase activities, both of which preferentially hydrolysed cyclic GMP rather than cyclic AMP. One enzyme, E-Ib, was activated in the presence of Ca2+ and calmodulin, and the other, E-Ia, was not. The E-Ia enzyme, which did not bind to calmodulin-Sepharose, had Mr 325 000 and displayed anomalous kinetic behaviour [Km (cyclic GMP) 1.2 microM; Km (cyclic AMP) 15.4 microM]. The E-Ib enzyme, which bound to calmodulin-Sepharose in the presence of Ca2+, had Mr 150 000 and exhibited Michaelis-Menten kinetics for hydrolysis of cyclic GMP [Km (basal) 6.5 microM; Km (activated) 12.0 microM]. E-Ia activity was diminished by incubation with alpha-chymotrypsin and was unaffected by the action of a rat kidney lysosomal proteinase. Partial hydrolysis of E-Ib enzyme by alpha-chymotrypsin or the kidney proteinase resulted in irreversible activation of the enzyme. The E-I enzyme isolated from HTC hepatoma cells was similar to the rat liver E-Ia enzyme in many respects. Its apparent Mr was 325 000. Its activity was unaffected by calmodulin in the presence of Ca2+ or by incubation with the kidney proteinase, and was decreased by digestion with alpha-chymotrypsin. Unlike the liver E-Ia enzyme, however, the hepatoma enzyme exhibited normal kinetic behaviour, with Km (cyclic GMP) 3.2 microM. Although HTC cells contain two other phosphodiesterases analogous to those in rat liver and a calmodulin-like activator of phosphodiesterase, no calmodulin-sensitive phosphodiesterase was detected.  相似文献   

9.
Like adult heads and whole flies, larval brains of wild type Drosophila melanogaster contain two major soluble cyclic nucleotide phosphodiesterases, forms I and II. Larval brains of the learning-defective mutant strain, dunceM11, contain only the form I enzyme. In both wild type and dunce strains the form I enzyme is activated by Ca2+/calmodulin. A time-dependent loss of this Ca2+ activation was observed.  相似文献   

10.
The effect of regucalcin, a novel Ca2+-binding protein, on Ca2+/ calmodulin-dependent cyclic adenosine monophosphate (AMP) phosphodiesterase activity in the cytosol of rat renal cortex was investigated. Regucalcin with physiologic concentration (10-7 M) in rat kidney had no effect on cyclic AMP phosphodiesterase activity in the absence of CaCl2 and calmodulin. However, the activatory effect of both CaCl2 (10 µM) and calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was markedly inhibited by the addition of regucalcin (10-8 to 10-6 M) in the enzyme reaction mixture. The inhibitory effect of regucalcin on the enzyme activity was also seen in the presence of CaCl2 (5-50 µM) or calmodulin (5-50 U/ml) with increasing concentrations. The presence of trifluoperazine (10 µM), an antagonist of calmodulin, caused a partial inhibition of Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activity. This inhibition was further enhanced by the addition of regucalcin (10-7 M). The inhibitory effect of regucalcin (10-7 M) was not seen in the presence of 20 µM trifluoperazine. Moreover, the activatory effect of calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was not entirely seen, when calmodulin was added 10 min after incubation in the presence of CaCl2 (10 µM) and regucalcin (10-7 M). The present results demonstrates that regucalcin has an inhibitory effect on Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activation in the cytosol of rat renal cortex.  相似文献   

11.
The postsynaptic density (PSD) fraction from canine cerebra cortex was found to contain an endogenous cyclic nucleotide-phosphodiesterase activity that was independent on Mn2+ and/or Mg2+ but not on Ca2+. Maximal activity was obtained at 1 micrometer Mn2+. This cyclic nucleotide phosphodiesterase activity was not decreased upon removal of the calmodulin from the PSD fraction, nor was it increased by the addition of calmodulin to a postsynaptic density fraction deficient in calmodulin. The enzymatic activity could be extracted by sonication, with the soluble enzyme having properties similar to those found in the native structure. Two peaks of cyclic nucleotide phosphodiesterase activities could be obtained after S-300 Sephacryl column chromatography of this soluble fraction: fraction I (excluded peak) and fraction II (215,000 mol wt). The fraction I activity preferred cyclic AMP over cyclic GMP and was not activated by calmodulin. The fraction II activity has an approximately fourfold lower Km for cyclic GMP over cyclic AMP. This fraction II activity was activatable by calmodulin, which increased the Vmax and decreased the Km in the case of both cyclic nucleotides. We conclude that two activities are present in the PSD, one activatable, and one not activatable, by calmodulin.  相似文献   

12.
R L Kincaid 《Biochemistry》1984,23(6):1143-1147
Cyclic nucleotide phosphodiesterase (0.07 nM) was activated by near stoichiometric concentrations of [3-(2-pyridyldithio)propionyl]calmodulin (PDP-CaM) after initial incubation of these proteins at 200-fold higher concentrations; activity in assays with EGTA was 80% of that in the presence of Ca2+. The enzyme incubated with native calmodulin under identical conditions required approximately 1 nM for half-maximal activation, and no activation was observed in the absence of calcium. These data suggested formation of a covalent complex between phosphodiesterase and PDP-CaM. On high-performance gel-permeation chromatography in the presence of metal chelators, the complex appeared considerably larger than the native enzyme. Incubation of phosphodiesterase with the thiolated (inactivated) form of PDP-CaM did not change its chromatographic behavior, indicating that reactive sulfhydryl groups were involved in complex formation. Although the total activities recovered from chromatography were not significantly different, maximal activation of PDP-CaM-phosphodiesterase complex was only approximately 20%, whereas the control enzyme was activated 6-8-fold by Ca2+ plus calmodulin. Kinetics of cGMP hydrolysis in the presence of EGTA by the isolated complex differed from those of control enzyme but were indistinguishable from those of control enzyme assayed with saturating Ca2+ and CaM. The calmodulin antagonists W-7 and trifluoperazine had relatively little effect on activity of the PDP-CaM-phosphodiesterase complex. Incubation of the complex with dithiothreitol dramatically increased its Ca2+ and calmodulin responsiveness, suggesting that reduction of the disulfide cross-link released phosphodiesterase from the complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The hormonal control of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity has been studied by using as a model the isoproterenol stimulation of cyclic AMP phosphodiesterase activity in C6 glioma cells. A 2-fold increase in cyclic AMP phosphodiesterase specific activity was observed in homogenates of isoproterenol-treated cells relative to control. This increase reached a maximum 3 h after addition of isoproterenol, was selective for cyclic AMP hydrolysis, was reproduced by incubation with 8-Br cyclic AMP but not with 8-Br cyclic GMP and was limited to the soluble enzyme activity. The presence of 0.1 mM EGTA did not alter the magnitude of the increase in phosphodiesterase activity. Moreover, the calmodulin content in the cell extracts was not changed after isoproterernol. DEASE-Sephacel chromatography of the 100 000×g supernatant resolved two peaks of phosphodiesterase activity. The first peak hydrolyzed both cyclic nucleotides and was activated by Ca2+ and purified calmodulin. The second peak was specific for cyclic AMP but it was Ca2+- and calmodulin-insensitive. Isoproterenol selectively increased the specific activity of the second peak. Kinetic analysis of the cyclic AMP hydrolysis by the induced enzyme reveled a non-linear Hofstee plot with apparent Km values of 2–5 μM. Cyclic GMP was not hydrolyzed by this enzyme in the absence or presence of calmodulin and failed to affect the kinetics of the hydrolysis of cyclic AMP. Gel filtration chromatography of the induced DEASE-Sephacel peak resolved a single peak of enzyme activity with an apparent molecular weight of 54 000.  相似文献   

14.
Ca2+-regulated guanylate cyclase in ciliary membranes from Paramecium contained tightly bound calmodulin. Antisera against calmodulin from Tetrahymena and soybean inhibited enzyme activity. EGTA did not easily release calmodulin; however, La3+ inhibited guanylate cyclase by dissociation of calmodulin. While La could not replace Ca in the activation of guanylate cyclase, it substituted for Ca2+ in the activation of calmodulin-dependent phosphodiesterase from pig brain independently of whether homologous or Paramecium calmodulin was used. After removal of endogenous calmodulin from guanylate cyclase, reconstitution was achieved with calmodulin from Paramecium, Tetrahymena, pig brain, and soybean. Ca2+-binding proteins lacking trimethyllysine like calmodulin from Dictyostelium, parvalbumin, and troponin C failed to restore enzyme activity. The properties of the native and reconstituted guanylate cyclase/calmodulin complex were compared. Reassociation of calmodulin with its target enzyme was weak since all calmodulin remained in the supernatant after a single centrifugation. While most enzyme characteristics remained unchanged in the reconstituted complex, the inhibition by Ca greater than 100 microM was of a mixed-type compared to noncompetitive inhibition in the native enzyme. The regulation of the enzyme by cations was also altered. Whereas Ca was the most potent and specific activator of the native enzyme, in the reconstituted system Sr was far more effective.  相似文献   

15.
Two cyclic nucleotide phosphodiesterase activities were separated by ion-exchange chromatography of cytosol from male mouse germ cells. A form eluted at low salt concentration showed high affinity (Km congruent to 2 microM) and low affinity (Km congruent to 20 microM) for cyclic AMP, and high affinity (Km congruent to 3.5 microM) for cyclic GMP. A second form, eluted at high salt concentration, showed high affinity (Km congruent to 5 microM) for cyclic AMP and was similar to a phosphodiesterase activity described in rat germ cells. The present study was performed to characterize the first form, which represents most of the phosphodiesterase activity in mouse germ cells. The enzyme was sensitive to Ca2+ and calmodulin stimulation, which increased its activity 3-4-fold. Calmodulin stimulation depended on direct interaction of the activator with the enzyme, as indicated by the reversible changes in the chromatographic elution pattern in the presence of Ca2+, as well as by the increase in the sedimentation coefficient in the presence of calmodulin. Reciprocal inhibition kinetics between cyclic AMP and cyclic GMP for the calmodulin-dependent form demonstrated a non-competitive inhibition between the two substrates, suggesting the presence of separate catalytic sites. This is in agreement with kinetic parameters and different thermal stabilities of cyclic AMP- and cyclic GMP-hydrolysing activities. Furthermore, the relevant change in s value, depending on the absence or presence of Ca2+ and calmodulin, suggested that the enzyme is composed of subunits, which aggregate in the presence of the activator. A model for catalytic site composition and reciprocal interaction is also proposed.  相似文献   

16.
The Ca2+-calmodulin-dependent interaction of phosphodiesterase with phenyl-Sepharose was demonstrated. BSA caused incomplete competitive inhibition of phosphodiesterase activation by calmodulin. The 17-fold increase of the constant for phosphodiesterase activation by calmodulin was accompanied by an insignificant rise in the maximum rate of cAMP hydrolysis; in this case the value of the inhibition constant amounted to Ki approximately 6 microM. In the absence of calmodulin saturating concentrations of BSA reduced the enzyme activity nearly 3-4-fold. The effect of BSA on phosphodiesterase was incompetitive with respect to cAMP (Ki approximately 1.4 microM). Both phenomena are characteristic of incompetitive binding of BSA to the enzyme with respect to cAMP and calmodulin. Gel filtration data reflect the changes in the enzyme molecular weight during its interaction with BSA. All the above reactions of the enzyme are reversible.  相似文献   

17.
Under phosphorylating conditions, addition of Ca2+ or cyclic AMP to the 100,000 g supernatant of purified bovine adrenal chromaffin cells increases both the incorporation of 32P into tyrosine hydroxylase and the activity of the enzyme. Combining maximally effective concentrations of each of these stimulating agents produces an additive increase in both the level of 32P incorporation into tyrosine hydroxylase and the degree of activation of the enzyme. The increased phosphorylation by Ca2+ is due to stimulation of endogenous Ca2+-dependent protein kinase activity and not inhibition of phosphoprotein phosphatases. When the chromaffin cell supernatant is subjected to diethylaminoethyl (DEAE) chromatography to remove calmodulin and phospholipids, tyrosine hydroxylase is no longer phosphorylated or activated by Ca2+; on the other hand, phosphorylation and activation of tyrosine hydroxylase by cyclic AMP are not affected. Subsequent replacement of either Ca2+ plus calmodulin or Ca2+ plus phosphatidylserine to the DEAE-fractionated cell supernatant restores the phosphorylation, but not activation of the enzyme. Reverse-phase HPLC peptide mapping of tryptic digests of tyrosine hydroxylase from the 100,000 g supernatant shows that the Ca2+-dependent phosphorylation occurs on three phosphopeptides, whereas the cyclic AMP-dependent phosphorylation occurs on one of these peptides. In the DEAE preparation, either cyclic AMP alone or Ca2+ in the presence of phosphatidylserine stimulates the phosphorylation of only a single phosphopeptide peak, the same peptide phosphorylated by cyclic AMP in the crude supernatant. In contrast, Ca2+ in the presence of calmodulin stimulates the phosphorylation of three peptides having reverse-phase HPLC retention times that are identical to peptides phosphorylated by Ca2+ addition to the crude unfractionated 100,000 g supernatant. Rechromatography of the peaks from each of the in vitro phosphorylations, either in combination with each other or in combination with each of the seven peaks generated from phosphorylation of tyrosine hydroxylase in situ, established that cyclic AMP, Ca2+/phosphatidylserine, and Ca2+/calmodulin all stimulate the phosphorylation of the same reverse-phase HPLC peptide: in situ peptide 6. Ca2+/calmodulin stimulates the phosphorylation of in situ peptides 3 and 5 as well. Thus, tyrosine hydroxylase can be phosphorylated in vitro by protein kinases endogenous to the chromaffin cell. Phosphorylation occurs on a maximum of three of the seven in situ phosphorylated sites, and all three of these sites can be phosphorylated by a Ca2+/calmodulin-dependent protein kinase.  相似文献   

18.
Calmodulin from Drosophila heads has been purified to apparent electrophoretic homogeneity. It has the same characteristics as bovine brain calmodulin with respect to the migration upon polyacrylamide gel electrophoresis and maximal activation of a calmodulin-deficient cAMP phosphodiesterase. The amino acid composition resembles bovine brain calmodulin with the exception that trimethyllysine is absent and that it contains only one tyrosine. The tryptic peptide map of Drosophila calmodulin suggests some differences in the amino acid sequence as compared to bovine brain calmodulin. These proposed differences in the primary structure may explain why Drosophila calmodulin is less potent than bovine brain calmodulin in the activation of a cAMP phosphodiesterase from bovine brain.  相似文献   

19.
Highly purified sheep lung cyclic-3',5'-nucleotide phosphodiesterase was sensitive to Ca2+/EGTA but insensitive to exogenous calmodulin. The Ca2+-sensitivity was inhibited by trifluoperazine. Heat-treated enzyme could activate a calmodulin-deficient phosphodiesterase, suggesting the presence of endogenous calmodulin in sheep lung cyclic-3',5'-nucleotide phosphodiesterase, possibly associated with the enzyme in a Ca2+-independent manner.  相似文献   

20.
E J Choi  Z Xia  D R Storm 《Biochemistry》1992,31(28):6492-6498
Characterization of adenylyl cyclases has been facilitated by the isolation of cDNA clones for distinct adenylyl cyclases including the type I and type III enzymes. Expression of type I adenylyl cyclase activity in animal cells has established that this enzyme is stimulated by calmodulin and Ca2+. Type III adenylyl cyclase is enriched in olfactory neurons and is regulated by stimulatory G proteins. The sensitivity of the type III adenylyl cyclase to Ca2+ and calmodulin has not been reported. In this study, type III adenylyl cyclase was expressed in human kidney 293 cells to determine if the enzyme is stimulated by Ca2+ and calmodulin. The type III enzyme was not stimulated by Ca2+ and calmodulin in the absence of other effectors. It was, however, stimulated by Ca2+ through calmodulin when the enzyme was concomitantly activated by either GppNHp or forskolin. The concentrations of free Ca2+ for half-maximal stimulation of type I and type III adenylyl cyclases were 0.05 and 5.0 microM Ca2+, respectively. These data suggest that the type III adenylyl cyclase is stimulated by Ca2+ when the enzyme is activated by G-protein-coupled receptors and that increases in free Ca2+ accompanying receptor activation may amplify the primary cyclic AMP signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号