首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The PSC (peptide-sensitive Channel), a cationic channel of large conductance, has been characterized in yeast and mammalian mitochondria by three different methods, tip-dip, patch clamp of giant liposomes, and planar bilayers. The yeast and mammalian PSC share the common property to be blocked by basic peptides such as pCyt OX IV (1–12)Y which contains the first 12 residues of the presequence of cytochromec oxidase subunit IV. The electrophysiological data are consistent with a translocation of the peptide through the pore. Analysis of the frequency of observation of the PSC in different fractions indicates that the channel is located in the outer mitochondrial membrane. Uptake measurements of iodinated peptides by intact mitochondria from a porin-less mutant show that the peptides are translocated through the outer membrane, presumably at the level of PSC. Among the peptides active on PSC, several, such as pCyt OX IV (1–22) and the reduced form of the mast cell degranulating peptide, induce an alteration of the voltage dependence or of the inactivation rate subsisting after washing and which is eliminated only by proteolysis of the interacting peptide. These irreversible effects may account for the variability of the properties of the PSC which would interact with cytosolic or intermembrane cations, peptides, or proteins, thus modulating the channel permeability. Finally, several lines of evidence suggest the participation of the PSC in protein translocation and some interaction with the general insertion pore of the outer membrane translocation machinery.  相似文献   

2.
The relation between the various spatial structures of the gramicidin A channels and their ionic conductance has been studied. For this aim, various conformations of the peptide were pre-formed in liposomal bilayer and after subsequent fusion of liposomes with planar lipid bilayer the measured channel conductance was correlated with gramicidin structures established in liposomes. To form the single-stranded π6.3π 6.3 helix the peptide and lipid were co-dissolved in TFE prior to liposome preparation. THF and other solvents were used to form parallel (↑ ↑ π π) and antiparallel (↑ ↓ π π) double helices. Conformation of gramicidin in liposomes made by various phosphatidylcholines was monitored by CD spectroscopy, and computer analysis of the spectra obtained was performed. After fusion of gramicidin containing liposomes with planar bilayer membranes from asolectin, the histograms of single-channel conductance were obtained. The histograms had one or three distinct peaks depending on the liposome preparation. Assignment of the structure of the channel to conductance levels was made by correlation of CD data with conductance histograms. The channel-forming analogue, des(Trp-Leu)2-gramicidin A, has been studied by the same protocol. The channel conductances of gramicidin A and the shortened analogue increase in the following order: ↑ ↓ π π 2 ↑ ↑ π π < π 6.3π6.3. Single-channels formed by double helices have higher dispersity of conductance than the π6.3π6.3 helical channel. Lifetimes of the double helical and the π6.3π6.3 helical channels are very close to each other. The data obtained were compared with theoretically predicted properties of double helices [1].  相似文献   

3.
From morphological and biochemical studies it has been recognized that the regions where the outer and inner membranes of mitochondria come in close contact (contact sites) can be the route mechanism through which mitochondria interact directly with the cytoplasm. We have studied these regions electrophysiologically with the patch clamp technique, with the aim of understanding if this direct interaction is mediated by high conductance ion channels similar to the channel already detected in the inner membrane of mitochondria (Sorgato M. C., Keller, B. U., and Stühmer, W. (1987) Nature 330, 498-500). Contact sites isolated from rat brain mitochondria were thus incorporated into liposomes subsequently enlarged sufficiently to be patch clamped. This study shows that these particular fractions contain ion channels with conductances ranging from approximately 5 picosiemens to 1 nanosiemens (in symmetrical 150 mM KCl). Most of these channels are not voltage-dependent and can be open at physiological potentials sustained by respiring mitochondria. The lack of voltage sensitivity seems not to be the outcome of methodological artifacts, as voltage-gated channels are detected in giant liposomes containing either the outer mitochondrial membrane or a partially purified fraction of the inner mitochondrial membrane. These data therefore indicate that channels present in mitochondrial contact sites have properties which render them amenable to perform several of the functions hypothesized for these regions, particularly that of translocating macromolecules from the cytoplasm to the matrix of mitochondria.  相似文献   

4.
The hypothesis that actin interactions account for the signature biophysical properties of cloned epithelial Na(+) channels (ENaC) (conductance, ion selectivity, and long mean open and closed times) was tested using planar lipid bilayer reconstitution and patch clamp techniques. We found the following. 1) In bilayers, actin produced a more than 2-fold decrease in single channel conductance, a 5-fold increase in Na(+) versus K(+) permselectivity, and a substantial increase in mean open and closed times of wild-type alphabetagamma-rENaC but had no effect on a mutant form of rENaC in which the majority of the C terminus of the alpha subunit was deleted (alpha(R613X)betagamma-rENaC). 2) When alpha(R613X)betagamma-rENaC was heterologously expressed in oocytes and single channels examined by patch clamp, 12.5-pS channels of relatively low cation permeability were recorded. These characteristics were identical to those recorded in bilayers for either alpha(R613X)betagamma-rENaC or wild-type alphabetagamma-rENaC in the absence of actin. Moreover, we show that rENaC subunits tightly associate, forming either homo- or heteromeric complexes when prepared by in vitro translation or when expressed in oocytes. Finally, we show that alpha-rENaC is properly assembled but retained in the endoplasmic reticulum compartment. We conclude that actin subserves an important regulatory function for ENaC and that planar bilayers are an appropriate system in which to study the biophysical and regulatory properties of these cloned channels.  相似文献   

5.
The inhibitory glycine receptor (GlyR) of rat spinal cord contains an intrinsic transmembrane channel mediating agonist-gated anion flux. Here, synthetic peptides modelled after the predicted transmembrane domains M2 and M4 of its ligand-binding subunit were incorporated into lipid vesicle membranes and black lipid bilayers to analyze their channel forming capabilities. Both types of peptides prohibited the establishment of, or dissipated, preexisting transmembrane potentials in the vesicle system. Incorporation of peptide M2 into the black lipid bilayer elicited randomly gated single channel events with various conductance states and life-times. Peptide M4 increased the conductance of the bilayer without producing single channels. Exchange of the terminal arginine residues of peptide M2 by glutamate resulted in a significant shift towards cation selectivity of the respective channels as compared to peptide M2. In conclusion, the peptide channels observed differed significantly from native GlyR in both conductivity and ion-selectivity indicating that individual synthetic transmembrane segments are not sufficient to mimic a channel protein composed of subunits with multiple transmembrane segments.  相似文献   

6.
Voltage-gated anion channels in vesicles prepared from the electric organ of Narke japonica were studied using two methods. Ionic permeability was measured by the light scattering method, which could be used to measure the ion permeation of whole vesicles but only at a time scale of slower than about 0.1 s. The single channel conductances and permeability ratios for various ions were measured after fusing the vesicles to phospholipid bilayers. Both sets of results coincided, indicating that the anion channels observed with the planar bilayer method are the major route for anion passage in these vesicles. The channels showed anion selectivity and did not allow the permeation of cations such as K+ and choline+. The single channel conductance was 18 pS in 0.1 M Cl-. SCN- inhibited the conductance in a voltage-dependent reversible manner on both sides of a channel. SCN- may bind to the Cl- binding site in a channel and thus block it. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) blocked a channel on the cis (extracellular) side irreversibly. The number of anion channels per vesicle was estimated to be about 50. It was also shown that all anion channels in the vesicles were open at the very instance of fusion with planar membranes.  相似文献   

7.
Ion channels selective for chloride ions are present in all biological membranes, where they regulate the cell volume or membrane potential. Various chloride channels from mitochondrial membranes have been described in recent years. The aim of our study was to characterize the effect of stilbene derivatives on single-chloride channel activity in the inner mitochondrial membrane. The measurements were performed after the reconstitution into a planar lipid bilayer of the inner mitochondrial membranes from rat skeletal muscle (SMM), rat brain (BM) and heart (HM) mitochondria. After incorporation in a symmetric 450/450 mM KCl solution (cis/trans), the chloride channels were recorded with a mean conductance of 155 ± 5 pS (rat skeletal muscle) and 120 ± 16 pS (rat brain). The conductances of the chloride channels from the rat heart mitochondria in 250/50 mM KCl (cis/trans) gradient solutions were within the 70–130 pS range. The chloride channels were inhibited by these two stilbene derivatives: 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS). The skeletal muscle mitochondrial chloride channel was blocked after the addition of 1 mM DIDS or SITS, whereas the brain mitochondrial channel was blocked by 300 μM DIDS or SITS. The chloride channel from the rat heart mitochondria was inhibited by 50–100 μM DIDS. The inhibitory effect of DIDS was irreversible. Our results confirm the presence of chloride channels sensitive to stilbene derivatives in the inner mitochondrial membrane from rat skeletal muscle, brain and heart cells.  相似文献   

8.
A simple method is described for promoting and detecting fusion of liposomes with planar bilayer membranes. Liposomes containing ergosterol are doped with the pore-forming antibiotic nystatin, and the planar bilayer is kept ergosterol-free. Under these conditions, when a transbilayer salt gradient is applied, liposomes added to the high-salt side of the bilayer elicit the appearance of abrupt conductance jumps of 5-300 pS. The increase in conductance is transient, decaying back to baseline on the order of 10 s. Each of these "spikes" represents the fusion of a single liposome with the bilayer, resulting in the simultaneous insertion of many nystatin channels. Relaxation of the conductance back to baseline occurs because ergosterol, required for the integrity of the nystatin pore, diffuses away into the sterol-free planar bilayer after liposome fusion. When Torpedo Cl- channels are reconstituted into liposomes containing ergosterol and nystatin, fusion spikes are observed simultaneously with the appearance of Cl- channels. This method allows the calculation of the density of functional ion channels in a preparation of proteoliposomes containing reconstituted channel protein.  相似文献   

9.
Template-assembled proteins (TASPs) comprising 4 peptide blocks, each of either the natural melittin sequence (melittin-TASP) or of a truncated melittin sequence (amino acids 6-26, melittin6-26-TASP), C-terminally linked to a (linear or cyclic) 10-amino acid template were synthesized and characterized, structurally by CD, by fluorescence spectroscopy, and by monolayer experiments, and functionally, by electrical conductance measurements on planar bilayers and release experiments on dye-loaded vesicles. Melittin-TASP and the truncated analogue preferentially adopt alpha-helical structures in methanol (56% and 52%, respectively) as in lipid membranes. Unlike in methanol, the melittin-TASP self-aggregates in water. On an air-water interface, the differently sized molecules can be self-assembled and compressed to a compact structure with a molecular area of around 600 A2, compatible with a 4-helix bundle preferentially oriented perpendicular to the interface. The proteins reveal a strong affinity for lipid membranes. A partition coefficient of 1.5 x 10(9) M-1 was evaluated from changes of the Trp fluorescence spectra of the TASP in water and in the lipid bilayer. In planar lipid bilayers, TASP molecules are able to form defined ion channels, exhibiting a small single-channel conductance of 7 pS (in 1 M NaCl). With increasing protein concentration in the lipid bilayer, additional, larger conductance states of up to 1 nS were observed. These states are likely to be formed by aggregated TASP structures as inferred from a strongly voltage-dependent channel activity on membranes of large area. In this respect, melittin-TASP reveals channel features of the native peptide, but with a considerably lower variation in the size of the channel states. Compared to the free peptide, template-assembled melittin has a much higher membrane activity: it is about 100 times more effective in channel formation and 20 times more effective in releasing dye molecules from lipid vesicles. This demonstrates that the lytic properties are not solely related to channel formation.  相似文献   

10.
Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition. Our new system uses specific ligands to facilitate the unidirectional incorporation of membrane proteins into lipid bilayers. Cryo–electron microscopic imaging demonstrates the unilamellar nature of the bSUMs. Electrical recordings from voltage-gated ion channels in bSUMs of varying diameters demonstrate the versatility of the new system. Using KvAP as a model system, we show that compared with other in vitro membrane systems, the bSUMs have the following advantages: (a) a major fraction of channels are orientated in a controlled way; (b) the channels mediate the formation of the lipid bilayer; (c) there is one and only one bilayer membrane on each bead; (d) the lipid composition can be controlled and the bSUM size is also under experimental control over a range of 0.2–20 µm; (e) the channel activity can be recorded by patch clamp using a planar electrode; and (f) the voltage-clamp speed (0.2–0.5 ms) of the bSUM on a planar electrode is fast, making it suitable to study ion channels with fast gating kinetics. Our observations suggest that the chemically engineered bSUMs afford a novel platform for studying lipid–protein interactions in membranes of varying lipid composition and may be useful for other applications, such as targeted delivery and single-molecule imaging.  相似文献   

11.
The Alzheimer's Disease (AD) amyloid protein (AßP[1-40]) forms cation selective channels when incorporated into planar lipid bilayers by fusion with liposomes containing the peptide. Since the peptide has been proposed to occurin vivo in both membrane-bound and soluble forms, we also tested the possibility of direct incorporation of the soluble AßP[1-40] into the membrane. We found the peptide can also form similar channels in acidic phospholipid bilayers formed at the tip of a patch pipet, as well as in the planar lipid bilayer system. As in the case of liposome mediated incorporation, the AßP[1-40]-channel in the solvent-free membrane patch exhibits multiple cation selectivity (Cs+>Li+>Ca2+K+) and sensitivity to tromethamine. The fact that equivalentAßP[1-40] amyloid channels can be detected by two different methods thus provides additional validation of our original observation. Further studies with aßP-channels incorporated into planar lipid bilayers from the liposome complex have also revealed that the channel activity can express spontaneous transitions to a much higher range of conductances between 400 and 4000 pS. Under these conditions, the amyloid channel continues to be cation selective but loses its tromethamine sensitivity. By contrast, amyloid channels were insensitive to nitrendipine at either conductance range. We calculate that if such channels were expressed in cells, the ensuing ion fluxes down their electrochemical potential gradients would disrupt cellular homeostasis. We therefore interpret these data as providing further support for our ß-amyloid Ca2+-channel hypothesis for neuronal death in Alzheimer's Disease.  相似文献   

12.
Thundimadathil J  Roeske RW  Jiang HY  Guo L 《Biochemistry》2005,44(30):10259-10270
Beta sheet peptides (e.g., amyloid beta) are known to form ion channels in lipid bilayers possibly through aggregation, though the channel structure is not clear. We have recently reported that a short beta sheet peptide, (xSxG)(6), forms porin-like voltage-gated channels in lipid bilayers [Thundimadathil et al. (2005) Biochem. Biophys. Res. Commun. 330, 585-590]. To account for the porin-like activity, oligomerization of the peptide into a beta barrel-like structure was proposed. In this work, peptide aggregation in aqueous and membrane environments and a detailed study of channel properties were performed to gain insight into the mechanism of channel formation. The complex nature of the channel was revealed by kinetic analysis and the occurrence of interconverting multiple conductance states. Ion channels were inhibited by Congo red, suggesting that the peptide aggregates are the active channel species. Peptide aggregation and fibril formation in water were confirmed by electron microscopy (EM) and Congo red binding studies. Furthermore, oligomeric structures in association with lipid bilayers were detected. Circular dichroism of peptide-incorporated liposomes and peptide-lipid binding studies using EM suggest a lipid-induced beta sheet aggregation. Gel electrophoresis of peptide-incorporated liposomes showed dimeric and multimeric structures. Taken together, this work indicates insertion of (xSxG)(6) as oligomers into the lipid bilayer, followed by rearrangement into a beta barrel-like pore structure. A large peptide pore comprising several individual beta sheets or smaller beta sheet aggregates is expected to have a complex behavior in membranes. A dyad repeat sequence and the presence of glycine, serine, and hydrophobic residues in a repeated pattern in this peptide may be providing a favorable condition for the formation of a beta barrel-like structure in lipid bilayers.  相似文献   

13.
Patch clamp electrophysiology is the main technique to study mechanosensitive ion channels (MSCs), however, conventional patch clamping is laborious and success and output depends on the skills of the operator. Even though automated patch systems solve these problems for other ion channels, they could not be applied to MSCs. Here, we report on activation and single channel analysis of a bacterial mechanosensitive ion channel using an automated patch clamp system. With the automated system, we could patch not only giant unilamellar liposomes but also giant Escherichia coli (E. coli) spheroplasts. The tension sensitivity and channel kinetics data obtained in the automated system were in good agreement with that obtained from the conventional patch clamp. The findings will pave the way to high throughput fundamental and drug screening studies on mechanosensitive ion channels.  相似文献   

14.
Bacteriophage lambda that binds to liposomes bears its receptor maltoporin (LamB) and is able to inject its DNA into the internal space. During this process, the liposomes are permeabilized, suggesting that a transmembrane channel has formed (Roessner and Ihler (1986) J. Biol. Chem. 261, 386-390). This pore possibly constitutes the pathway used by lambda DNA to cross the membrane. We reconstituted purified LamB from Shigella in liposomes that were incubated with lambda phages. Addition of this mixture to a bilayer chamber resulted in the incorporation in planar bilayers of high-conductance channels whose conductance, kinetics and voltage dependence were totally different from those of maltoporin channels.  相似文献   

15.
A cytolytic toxin produced by G. vaginalis was incorporated in artificial membranes and giant liposomes. The toxin formed ionic channels when incorporated in lipid bilayers. The electrical properties of such channels were studied. Current records revealed a unitary conductance of 126 pS (in symmetrical 150 mM KCl). The open state probability of the cytolysin formed channels was a function of the applied membrane potential. The permeability ratio of cations to anions was estimated to be 6.5.  相似文献   

16.
Reconstitution of large conductance calcium-activated potassium (KCa) channels from native cell membranes into planar lipid bilayers provides a powerful method to study single channel properties, including ion conduction, pharmacology, and gating. Recently, KCa channels derived from the Drosophila Slowpoke (Slo) gene have been cloned and heterologously expressed in Xenopus oocytes. In this report, we describe the reconstitution of cloned and expressed Slo KCa channels from Xenopus oocyte membranes into lipid bilayers. The reconstituted channels demonstrate functional properties characteristic of native KCa channels. They possess a mean unitary conductance of approximately 260 pS in symmetrical potassium (250 mM), and they are voltage- and calcium-sensitive. At 50 microM Ca2+, their half-activation potential was near -20 mV; and their affinity for calcium is in the micromolar range. Reconstituted Slo KCa channels were insensitive to external charybdotoxin (40-500 nM) and sensitive to micromolar concentrations of external tetraethylammonium (KD = 158 microM, at 0 mV) and internal Ba2+ (KD = 76 microM, at 40 mV). In addition, they were blocked by internally applied "ball" inactivating peptide (KD = 480 microM, at 40 mV). These results demonstrate that cloned KCa channels expressed in Xenopus oocytes can be readily incorporated into lipid bilayers where detailed mechanistic studies can be performed under controlled internal and external experimental conditions.  相似文献   

17.
An ion-channel forming protein produced by Entamoeba histolytica.   总被引:16,自引:0,他引:16       下载免费PDF全文
We have identified a remarkable ion-channel forming material in virulent strains of Entamoeba histolytica that may be responsible for many of the symptoms associated with amoebic dysentery. A polypeptide that we refer to as amoebapore is shed into the growth media and is also found within the amoeba in a high speed sedimentable fraction. Amoebapore has the distinctive property of spontaneously incorporating into lipid bilayers, liposomes, and cells, leading to progressive and irreversible changes in the ion conductance of the target membranes. Exposure of planar lipid bilayers to amoebapore -containing fractions under voltage clamp conditions results in an almost immediate and progressive incorporation of ion channels which continues in an irreversible manner leading to a fall in membrane impedance of up to five orders of magnitude. The ion-channel conductance is moderately cation-selective, voltage dependent, and displays a unit size of 1.6 +/- 0.2 nanoSiemens in 1 M KCl at -10 mV. In the bilayer, the amoebapore -induced conductance exhibits an in situ sensitivity to protease. Amoebapore is mainly concentrated in a fraction sedimenting at 150 000 g. It is insoluble in Triton X-100 but can be dissociated in an active state in 1% SDS. Under these conditions it has an apparent mol. wt. of 13 000 daltons.  相似文献   

18.
The peptide fragment of the carboxy-terminal region of the human immunodeficiency virus (HIV) transmembrane protein (gp41) has been implicated in T-cell death. This positively charged, amphipathic helix (amino acids 828 to 848) of the envelope protein is located within virions or cytoplasm. We studied the interaction of the isolated, synthetic amphipathic helix of gp41 with planar phospholipid bilayer membranes and with Sf9 cells using voltage clamp, potentiodynamic, and single-cell recording techniques. We found that the peptide binds strongly to planar membranes, especially to the negatively charged phosphatidylserine bilayer. In the presence of micromolar concentrations of peptide sufficient to make its surface densities comparable with those of envelope glycoprotein molecules in HIV virions, an increase in bilayer conductance and a decrease in bilayer stability were observed, showing pore formation in the planar lipid bilayers. These pores were permeable to both monovalent and divalent cations, as well as to chloride. The exposure of the inner leaflet of cell membranes to even 25 nM peptide increased membrane conductance. We suggest that the carboxy-terminal fragment of the HIV type 1 envelope protein may interact with the cell membrane of infected T cells to create lipidic pores which increase membrane permeability, leading to sodium and calcium flux into cells, osmotic swelling, and T-cell necrosis or apoptosis.  相似文献   

19.
Abstract

Rapid diffusion of hydrophilic molecules across the outer membrane of mitochondria has been related to the presence of a protein of 29 to 37 kDa, called voltage-dependent anion channel (VDAC), able to generate large aqueous pores when integrated in planar lipid bilayers. Functional properties of VDAC from different origins appear highly conserved in artificial membranes: at low transmembrane potentials, the channel is in a highly conducting state, but a raise of the potential (both positive and negative) reduces drastically the current and changes the ionic selectivity from slightly anionic to cationic. It has thus been suggested that VDAC is not a mere molecular sieve but that it may control mitochondrial physiology by restricting the access of metabolites of different valence in response to voltage and/or by interacting with a soluble protein of the intermembrane space. The latest application of the patch clamp and tip-dip techniques, however, has indicated both a different electric behavior of the outer membrane and that other proteins may play a role in the permeation of molecules. Biochemical studies, use of site-directed mutants, and electron microscopy of two-dimensional crystal arrays of VDAC have contributed to propose a monomelic β barrel as the structural model of the channel. An important insight into the physiology of the inner membrane of mammalian mitochondria has come from the direct observation of the membrane with the patch clamp. A slightly anionic., voltage-dependent conductance of 107 pS and one of 9.7 pS, K+-selective and ATP-sensitive, are the best characterized at the single channel level. Under certain conditions, however, the inner membrane can also show unselective nS peak transitions, possibly arising from a cooperative assembly of multiple substates.  相似文献   

20.
Bilayers were formed at the tip of microelectrodes from a suspension of proteoliposomes derived from wild-type and porin-deficient mutant yeast mitochondria. In both preparations, identical cationic channels of large conductance were recorded. This result rules out any relationship between this channel and the outer membrane voltage-dependent anion channel, the activity of which is carried by porin. The ionic selectivity and the voltage-dependence of the yeast cationic channel suggest that it is related to that recently described in mammalian mitochondria. This hypothesis is further supported by the fact that both channels are blocked by a mitochondrial addressing peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号