首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bergkvist J  Selander E  Pavia H 《Oecologia》2008,156(1):147-154
The dinoflagellate Alexandrium minutum has previously been shown to produce paralytic shellfish toxins (PST) in response to waterborne cues from the copepod Acartia tonsa. In order to investigate if grazer-induced toxin production is a general or grazer-specific response of A. minutum to calanoid copepods, we exposed two strains of A. minutum to waterborne cues from three other species of calanoid copepods, Acartia clausi, Centropages typicus and Pseudocalanus sp. Both A. minutum strains responded to waterborne cues from Centropages and Acartia with significantly increased cell-specific toxicity. Waterborne cues from Centropages caused the strongest response in the A. minutum cells, with 5 to >20 times higher toxin concentrations compared to controls. In contrast, neither of the A. minutum strains responded with significantly increased toxicity to waterborne cues from Pseudocalanus. The absolute increase in PST content was proportional to the intrinsic toxicity of the different A. minutum strains that were used. The results show that grazer-induced PST production is a grazer-specific response in A. minutum, and its potential ecological importance will thus depend on the composition of the zooplankton community, as well as the intrinsic toxin-producing properties of the A. minutum population.  相似文献   

2.
The re-emergence of Gymnodinum catenatum blooms after a 10 year hiatus of absence initiated the present investigation. This study aims to evaluate the exposure of small pelagic fishes to paralytic shellfish toxins (PST) during blooms of G. catenatum. Sardines (Sardina pilchardus) were selected as a representative fish species. In order to assess toxin availability to fish, both intracellular PSTs (toxin retained within the algal cells) and extracellular PSTs (toxin found in seawater outside algal cells) were quantified, as well as toxin levels within three fish tissue matrices (viscera, muscle and brain). During the study period, the highest cell densities of G. catenatum reached 2.5 × 104 cells l−1 and intracellular PST levels ranged from 3.4 to 398 ng STXeq l−1 as detected via an enzyme linked immunosorbent assay (ELISA). Measurable extracellular PSTs were also detected in seawater (0.2–1.1 μg STXeq l−1) for the first time in Atlantic waters. The PST profile in G. catenatum was determined via high performance liquid chromatography with fluorescence detection (HPLC-FLD) and consisted mostly of sulfocarbamoyl (C1+2, B1) and decarbamoyl (dcSTX, dcGTX2+3, dcNEO) toxins. The observed profile was similar to that reported previously in G. catenatum blooms in this region before the 10-year hiatus. Sardines, planktivorous fish that ingest a large number of phytoplankton cells, were found to contain PSTs in the viscera, reaching a maximum of 531 μg STXeq kg−1. PSTs were not detected in corresponding muscle or brain tissues. The PST profile characterized in sardine samples consisted of the same sulfocarbamoyl and decarbamoyl toxins found in the algal prey with minor differences in relative abundance of each toxin. Overall, the data suggest that significant biotransformation of PSTs does not occur in sardines. Therefore, planktivorous fish may be a good tracer for the occurrence of offshore G. catenatum blooms and the associated PSTs produced by these algae.  相似文献   

3.
There are at least 40,000 species of microalgae in the aquatic environment. Fifteen species of marine dinoflagellates and freshwater cyanobacteria are known to produce paralytic shellfish toxins (PSTs) and represent a threat to human and/or livestock health. Although known toxic species are regularly monitored, the wider cross‐section of microalgae has not been systematically tested for PSTs. Advances in rapid screening techniques have resulted in the development of highly sensitive and specific methods to detect PSTs, including the sodium channel and saxiphilin binding assays. These assays were used in this study in 96‐well formats to screen 234 highly diverse isolates of Australian freshwater and marine microalgae for PSTs. The screening assays detected five toxic species, representing one freshwater cyanobacterium (Anabaena circinalis Rabenhorst) and four species of marine dinoflagellates (Alexandrium minutum Halim, A. catenella Balech, A. tamarense Balech, and Gymnodinium catenatum Graham). Liquid chromatography‐fluorescence detection was used to identify 14 saxitoxin analogues across the five species, and each species exhibited distinct toxin profiles. These results indicate that PST production is restricted to a narrow range of microalgal species found in Australian waters.  相似文献   

4.
The morphology of Alexandrium minutum Halim from Denmark was studied and compared to the morphology of material from Portugal, Spain, France and Ireland. Strains from Denmark and the French coast of the English Channel differed from the typical minutum morphotype by the absence of a ventral pore. Cells without a pore also dominated field material from Ireland but a small fraction (6%) did have a pore. Many cells had a heavily areolated theca. In the exponential growth phase, the PSP-toxin profile of the Danish strain of A. minutum was dominated by C1 and C2 (up to 70%), whereas GTX2 and 3 made up more than 17%, and STX almost 13%. Cells entering the stationary phase contained 30% STX with a concomitant decrease of the other toxins. Partial large subunit rDNA sequences (664 bp) confirmed that the Danish A. minutum strain clusters together with other European strains of this species, and a strain from Australia. However, sequencing of this part of the gene did not resolve intraspecific relationships and could not differentiate populations with or without pore and/ or different toxin signatures. A strain from New Zealand had a remarkably high sequence divergence (up to 6%) compared to the other strains of A. minutum and its identity should be further investigated. A distribution map of A. minutum has been compiled and it is suggested that A. minutum and A. angustitabulatum Taylor are conspecific.  相似文献   

5.
The composition of the paralytic shellfish toxins (PSTs) of five Alexandrium tamarense strains isolated from the coastal waters of southern China and one Alexandrium minutum strain from Taiwan Island were investigated. A. tamarense CI01 and A. tamarense Dapeng predominantly produced C2 toxin (over 90%) with trace amounts of C1 toxin (C1), gonyautoxin-2 (GTX2) and GTX3; two strains of A. tamarense HK9301 maintained in different locations produced C1-4 toxins and GTX1, 4, 5 and 6; no PSTs were found in A. tamarense NEW, while A. minutum TW produced only GTX1-4. The toxin compositions of cultured A. tamarense strains did not vary as much during different growth phases as did the toxin composition of A. minutum TW. The toxin compositions of A. tamarense HK9301-1 did not change significantly under different salinity, light intensity, and nitrate and phosphate levels in the culture medium, although the toxin productivity varied expectably. Another strain HK9301-2 maintained in a different location produced much less toxins with a considerably different toxin composition. Under similar culture maintenance conditions for 3 years, the toxin profiles of A. tamarense HK9301-1 did not change as much as did A. tamarense CI01. Our results indicate that toxin compositions of the dinoflagellate strains are strain-specific and are subject to influence by nutritional and environmental conditions but not as much by the growth phase. Use of toxin composition in identifying a toxigenic strain requires special caution.  相似文献   

6.
Dinoflagellates of the Alexandrium ostenfeldii complex (A. ostenfeldii, A. peruvianum) are capable of producing different types of neurotoxins: paralytic shellfish toxins (PSTs), spirolides and gymnodimines, depending on the strain and its geographic origin. While Atlantic and Mediterranean strains have been reported to produce spirolides, strains originating from the brackish Baltic Sea produce PSTs. Some North Sea, USA and New Zealand strains contain both toxins. Causes for such intraspecific variability in toxin production are unknown. We investigated whether salinity affects toxin production and growth rate of 5 A. ostenfeldii/peruvianum strains with brackish water (Baltic Sea) or oceanic (NE Atlantic) origin. The strains were grown until stationary phase at 7 salinities (6–35), and their growth and toxin production was monitored. Presence of saxitoxin (STX) genes (sxtA1 and sxtA4 motifs) in each strain was also analyzed. Salinity significantly affected both growth rate and toxicity of the individual strains but did not change their major toxin profile. The two Baltic Sea strains exhibited growth at salinities 6–25 and consistently produced gonyautoxin (GTX) 2, GTX3 and STX. The two North Sea strains grew at salinities 20–35 and produced mainly 20-methyl spirolide G (20mG), whereas the strain originating from the northern coast of Ireland was able to grow at salinities 15–35, only producing 13-desmethyl spirolide C (13dmC). The effects of salinity on total cellular toxin concentration and distribution of toxin analogs were strain-specific. Both saxitoxin gene motifs were present in the Baltic Sea strains, whereas the 2 North Sea strains lacked sxtA4, and the Irish strain lacked both motifs. Thus sxtA4 only seems to be specific for PST producing strains. The results show that toxin profiles of A. ostenfeldii/peruvianum strains are predetermined and the production of either spirolides or PSTs cannot be induced by salinity changes. However, changes in salinity may lead to changed growth rates, total cellular toxin concentrations as well as relative distribution of the different PST and spirolide analogs, thus affecting the actual toxicity of A. ostenfeldii/peruvianum populations.  相似文献   

7.
The Aiptasia–Symbiodinium symbiosis is a promising model for experimental studies of cnidarian–dinoflagellate associations, yet relatively little is known regarding the genetic diversity of either symbiotic partner. To address this, we collected Aiptasia from 16 localities throughout the world and examined the genetic diversity of both anemones and their endosymbionts. Based on newly developed SCAR markers, Aiptasia consisted of two genetically distinct populations: one Aiptasia lineage from Florida and a second network of Aiptasia genotypes found at other localities. These populations did not conform to the distributions of described Aiptasia species, suggesting that taxonomic re‐evaluation is needed in the light of molecular genetics. Associations with Symbiodinium further demonstrated the distinctions among Aiptasia populations. According to 18S RFLP, ITS2‐DGGE and microsatellite flanker region sequencing, Florida anemones engaged in diverse symbioses predominantly with members of Symbiodinium Clades A and B, but also C, whereas anemones from elsewhere harboured only S. minutum within Clade B. Symbiodinium minutum apparently does not form a stable symbiosis with other hosts, which implies a highly specific symbiosis. Fine‐scale differences among S. minutum populations were quantified using six microsatellite loci. Populations of S. minutum had low genotypic diversity and high clonality (R = 0.14). Furthermore, minimal population structure was observed among regions and ocean basins, due to allele and genotype sharing. The lack of genetic structure and low genotypic diversity suggest recent vectoring of Aiptasia and S. minutum across localities. This first ever molecular‐genetic study of a globally distributed cnidarian and its Symbiodinium assemblages reveals host–symbiont specificity and widely distributed populations in an important model system.  相似文献   

8.
The toxin profiles of three isolates and natural populations of the PSP agentAlexandrium minutum from several Galician rías (NW Spain) was obtained by HPLC. The toxin content of cultures ofA. minutum is dominated by GTX4 (80–90%) and GTX4 (10–15%) with small amounts of GTX3 and GTX2 (less than 3% of each); similar results were obtained for natural populations ofAlexandrium from three different Galician rías, where a mixture ofA. lusitanicum Balech andA. minutum can occur. Important quantitative differences were found between the three isolates, one being highly and two weakly toxic. The results obtained from these isolates and natural populations ofAlexandrium were very similar to those obtained from HPLC analyses of mussels intoxicated during a PSP outbreak in Ría de Ares (Rías Altas) in 1984, confirming thatA. minutum (previously identified asGonyaulax tamarensis Lebour andAlexandrium lusitanicum) was the PSP agent during the toxic outbreak in May 1984. Toxin profiles obtained from natural populations during different PSP outbreaks in different rías and from cultures are fairly consistent and suggest that at least from the toxin point of view,A. lusitanicum andA. minutum are identical, and that the toxin profile ofA. minutum from Galicia can be used as a biochemical marker.  相似文献   

9.
Alexandrium ostenfeldii (Paulsen) Balech and Tangen and A. peruvianum (Balech and B.R. Mendiola) Balech and Tangen are morphologically closely related dinoflagellates known to produce potent neurotoxins. Together with Gonyaulax dimorpha Biecheler, they constitute the A. ostenfeldii species complex. Due to the subtle differences in the morphological characters used to differentiate these species, unambiguous species identification has proven problematic. To better understand the species boundaries within the A. ostenfeldii complex we compared rDNA data, morphometric characters and toxin profiles of multiple cultured isolates from different geographic regions. Phylogenetic analysis of rDNA sequences from cultures characterized as A. ostenfeldii or A. peruvianum formed a monophyletic clade consisting of six distinct groups. Each group examined contained strains morphologically identified as either A. ostenfeldii or A. peruvianum. Though key morphological characters were generally found to be highly variable and not consistently distributed, selected plate features and toxin profiles differed significantly among phylogenetic clusters. Additional sequence analyses revealed a lack of compensatory base changes in ITS2 rRNA structure, low to intermediate ITS/5.8S uncorrected genetic distances, and evidence of reticulation. Together these data (criteria currently used for species delineation in dinoflagellates) imply that the A. ostenfeldii complex should be regarded a single genetically structured species until more material and alternative criteria for species delimitation are available. Consequently, we propose that A. peruvianum is a heterotypic synonym of A. ostenfeldii and this taxon name should be discontinued.  相似文献   

10.
Species of Alexandrium produce potent neurotoxins termed paralytic shellfish toxins and are expanding their ranges worldwide, concurrent with increases in sea surface temperature. The metabolism of molluscs is temperature dependent, and increases in ocean temperature may influence both the abundance and distribution of Alexandrium and the dynamics of toxin uptake and depuration in shellfish. Here, we conducted a large‐scale study of the effect of temperature on the uptake and depuration of paralytic shellfish toxins in three commercial oysters (Saccostrea glomerata and diploid and triploid Crassostrea gigas, n = 252 per species/ploidy level). Oysters were acclimated to two constant temperatures, reflecting current and predicted climate scenarios (22 and 27 °C), and fed a diet including the paralytic shellfish toxin‐producing species Alexandrium minutum. While the oysters fed on A. minutum in similar quantities, concentrations of the toxin analogue GTX1,4 were significantly lower in warm‐acclimated S. glomerata and diploid C. gigas after 12 days. Following exposure to A. minutum, toxicity of triploid C. gigas was not affected by temperature. Generally, detoxification rates were reduced in warm‐acclimated oysters. The routine metabolism of the oysters was not affected by the toxins, but a significant effect was found at a cellular level in diploid C. gigas. The increasing incidences of Alexandrium blooms worldwide are a challenge for shellfish food safety regulation. Our findings indicate that rising ocean temperatures may reduce paralytic shellfish toxin accumulation in two of the three oyster types; however, they may persist for longer periods in oyster tissue.  相似文献   

11.
While there is increasing evidence that marine bacteria are involved in the production of paralytic shellfish toxins in algal blooms, the exact roles of the bacteria and microalgae have proved elusive. A novel experimental approach to this problem involved incubating parallel cultures of toxin producing Alexandrium minutum Anokoha A in the dark and in a natural daylight cycle. High-performance liquid chromatography was used to measure paralytic shellfish toxins while bacterial growth was monitored by culture on high- and low-nutrient agar media. After a 22-day incubation period in the dark, A. minutum Anokoha A failed to produce saxitoxin while parallel light-grown cultures produced 1.17 μg per 10,000 algal cells. However, both dark- and light-grown cultures showed comparable gonyautoxin production. Copiotrophic and oligotrophic algal-associated bacteria showed similar growth patterns over the incubation period except that a dip in bacterial numbers corresponded to a peak in algal numbers in the light-grown cultures. It appears that inhibition of photosynthesis resulted in changes in the toxin profile of A. minutum Anokoha A. When used with other methods, this approach may help to elucidate the algal–bacterial-toxin connection.  相似文献   

12.
The diversity of Alexandrium spp. in Irish coastal waters was investigated through the morphological examination of resting cysts and vegetative cells, the determination of PSP toxin and spirolide profiles and the sequence analysis of rDNA genes. Six morphospecies were characterised: A. tamarense, A. minutum, A. ostenfeldii, A. peruvianum, A. tamutum and A. andersoni. Both PSP toxin producing and non-toxic strains of A. tamarense and A. minutum were observed. The average toxicities of toxic strains for both cultured species were respectively 11.3 (8.6 S.D.) and 2.3 (0.5 S.D.) pg STX equiv. cell−1. Alexandrium ostenfeldii and A. peruvianum did not synthesise PSP toxins but HPLC–MS analysis of two strains showed distinct spirolide profiles. A cyst-derived culture of A. peruvianum from Lough Swilly mainly produced spirolides 13 desmethyl-C and 13 desmethyl-D whereas one of A. ostenfeldii, from Bantry Bay, produced spirolides C and D. Species identification was confirmed through the analyses of SSU, ITS1-5.8S-ITS2 and LSU rDNA genes. Some nucleotide variability was observed among clones of toxic strains of A. tamarense, which all clustered within the North American clade. However, rDNA sequencing did not allow discrimination between the toxic and non-toxic forms of A. minutum. Phylogenetic analysis also permitted the differentiation of A. ostenfeldii from A. peruvianum. Resting cysts of PSP toxin producing Alexandrium species were found in Cork Harbour and Belfast Lough, locations where shellfish contamination events have occurred in the past, highlighting the potential for the initiation of harmful blooms from cyst beds. The finding of supposedly non-toxic and biotoxin-producing Alexandrium species near aquaculture production sites will necessitate the use of reliable discriminative methods in phytoplankton monitoring.  相似文献   

13.
A clonal culture of a Vietnamese strain of Alexandrium minutum, AlexSp17, was subjected to different salinity treatments to determine the growth and toxin production of this strain that produces a novel toxin analogue, deoxy GTX4-12ol. The experiment was carried out in batch cultures without pre-acclimatization at seven salinity treatments from 5 to 35 psu, under constant temperature of 25°C, illumination of 140 μmol photon m−2 s−1, and 12:12 light/dark photoperiod. The strain grew in all salinity treatments, with optimum growth at 10–15 psu. However, the specific growth rate (0.2 day−1) was lower than those reported in Malaysian strains and other strains from different geographical areas. The optimum range of salinity for the growth of this species agreed with field observations of the locality of origin. No significant change in toxin profiles was observed at different salinities. The cellular toxin quota, Qt, was not affected by the salinity-dependent growth rate. The toxin GTX4-12ol is presumed to be a transformation product of GTX4 from specific cellular reductase enzymes. Further investigation at the molecular level of toxin biosynthesis and subcellular enzyme activities is needed to provide insight in the production of this unique toxin analogue.  相似文献   

14.
15.
16.
Increasing scientific awareness since the 1980s of the chain-forming dinoflagellate Gymnodinium catenatum has led to this species being reported with increased frequency in a globally increasing number of countries (23 at present). G. catenatum exhibits little molecular genetic variation in rDNA over its global range, in contrast to RAPD fingerprinting which points to high genetic variation within regional populations even between estuaries 50 km apart. All Australian and New Zealand strains possess a thymine nucleotide (T-gene) near the start of the 5.8S rRNA whereas all other global populations examined to date possess cytosine-nucleotide (C-gene), except for southern Japan which harbours both C-gene and T-gene strains. Together with cyst and plankton evidence this strongly suggests that both Australian and New Zealand populations have derived from southern Japan. Global dinoflagellate populations and cultures exhibit an extraordinary variation in PST profiles (STX and 21 analogues), but consistent regional patterns are evident with regard to the production of C1,2; C3,4; B1,2; and neoSTX analogues. PST profiles of cyst-derived cultures are deemed unrepresentative. Distinct ecophysiological differences exist between tropical (21–32 °C) and warm-temperate ecotypes (12–18 °C), but these appear unrelated to ITS genotypes and PST toxin phenotypes. On current evidence, cyst germination appears to play a minimal role in the bloom dynamics of this species, while seasonal and inter-annual bloom variations result from the physical constraints (temperature and light) on the growth of the dinoflagellates in the water column. G. catenatum exhibits a capacity to utilize many forms of nitrogen. Its chain formation and strong motility allow it to undergo retrieval migrations to exploit light and nutrient resource gradients in both stratified and mixed environments. Subtle strain-level variations in micronutrient (Se, humics) requirements and interaction with associated bacterial flora may provide a partial explanation for the contrasting inshore (Tasmanian), and offshore (Spain, Mexico) bloom patterns by the same species in different geographic regions.  相似文献   

17.
Clonal cultures of Alexandrium species collected from a shrimp pond on the northern coast of Vietnam were established and morphologically identified as Alexandrium minutum. Nucleotide sequences of domains 1 and 2 of the large subunit ribosomal (LSU) rRNA gene showed high sequence similarity to A. minutum isolates from Malaysia. Paralytic shellfish toxin profile of the clones was characterized by the dominance of GTX4, GTX1, and NEO. GTX3, GTX2, and dcSTX were also present in trace amount. Toxin content varied among the strains and growth stages, ranged from 3.0 to 12.5 fmol cell−1. In addition to these known toxin components, a new gonyautoxin derivative was detected by HPLC, eluting between GTX4 and GTX1. The peak of this compound disappeared under non-oxidizing HPLC condition but unchanged either after treated with 0.05 M ammonium phosphate/10% mercaptoethanol or 0.1N HCl hydrolysis. LCMS ion scanning showed a parental ion of [M + H]+ at m/z 396, [M − SO3]+ at m/z 316, and [M − SO4]+ at m/z 298. Based on these results, the derivative was identified as deoxy-GTX4-12ol, and this represents the first report of this toxin analogue.  相似文献   

18.
19.
Isolation of Staphylococcus aureus (Staph. aureus) from Holstein milk samples with mastitis and nonmastitis was conducted to estimate its prevalence, antimicrobial resistance and toxin genes. A total of 353 milk samples were collected from three Chinese Holstein herds. Fifty‐three Staph. aureus isolates collected from 29 Staph. aureus‐positive samples were characterized via antimicrobial susceptibility, toxin genes and Pulsed‐field Gel Electrophoresis (PFGE) profiles. The prevalence of Staph. aureus was 4·0–9·5% in mastitic and 7·3–11·5% in nonmastitic samples in the analysed herds. Approximately 61·0% of Staph. aureus strains isolated from mastitis cows were resistant to ≥10 antimicrobials compared with 0% of isolates with nonmastitis. The most frequently observed super antigenic toxin gene was pvl (41·5%) followed by seh pvl (13·2%). We did not find mecA‐positive methicillin‐resistant Staph. aureus (MRSA) strains, while mecA‐negative MRSA strains were identified in the three herds. PFGE results suggested potential transmission of Staph. aureus strains in different farms. These results open new insights into Staph. aureus transmission and antimicrobial resistance of Holstein dairy cows and into developing strategies for udder health improvement of dairy cattle.  相似文献   

20.
Few protistan grazers feed on toxic dinoflagellates, and low grazing pressure on toxic dinoflagellates allows these dinoflagellates to form red‐tide patches. We explored the feeding ecology of the newly described heterotrophic dinoflagellate Gyrodinium moestrupii when it fed on toxic strains of Alexandrium minutum, Alexandrium tamarense, and Karenia brevis and on nontoxic strains of A. tamarense, Prorocentrum minimum, and Scrippsiella trochoidea. Specific growth rates of G. moestrupii feeding on each of these dinoflagellates either increased continuously or became saturated with increasing mean prey concentration. The maximum specific growth rate of G. moestrupii feeding on toxic A. minutum (1.60/d) was higher than that when feeding on nontoxic S. trochoidea (1.50/d) or P. minimum (1.07/d). In addition, the maximum growth rate of G. moestrupii feeding on the toxic strain of A. tamarense (0.68/d) was similar to that when feeding on the nontoxic strain of A. tamarense (0.71/d). Furthermore, the maximum ingestion rate of G. moestrupii on A. minutum (2.6 ng C/grazer/d) was comparable to that of S. trochoidea (3.0 ng C/grazer/d). Additionally, the maximum ingestion rate of G. moestrupii on the toxic strain of A. tamarense (2.1 ng C/grazer/d) was higher than that when feeding on the nontoxic strain of A. tamarense (1.3 ng C/grazer/d). Thus, feeding by G. moestrupii is not suppressed by toxic dinoflagellate prey, suggesting that it is an effective protistan grazer of toxic dinoflagellates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号