首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new, more complete, five‐marker (SSU, LSU, psbA, COI, 23S) molecular phylogeny of the family Corallinaceae, order Corallinales, shows a paraphyletic grouping of seven well‐supported monophyletic clades. The taxonomic implications included the amendment of two subfamilies, Neogoniolithoideae and Metagoniolithoideae, and the rejection of Porolithoideae as an independent subfamily. Metagoniolithoideae contained Harveylithon gen. nov., with H. rupestre comb. nov. as the generitype, and H. canariense stat. nov., H. munitum comb. nov., and H. samoënse comb. nov. Spongites and Pneophyllum belonged to separate clades. The subfamily Neogoniolithoideae included the generitype of Spongites, S. fruticulosus, for which an epitype was designated. Pneophyllum requires reassesment. The generitype of Hydrolithon, H. reinboldii, was a younger heterotypic synonym of H. boergesenii. The evolutionary novelty of the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae was the development of tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials.  相似文献   

2.
Morphological, anatomical, and molecular sequence data were used to assess the establishment and phylogenetic position of the genus Wilsonosiphonia gen. nov. Phylogenies based on rbcL and concatenated rbcL and cox1 loci support recognition of Wilsonosiphonia gen. nov., sister to Herposiphonia. Diagnostic features for Wilsonosiphonia are rhizoids located at distal ends of pericentral cells and taproot‐shaped multicellular tips of rhizoids. Wilsonosiphonia includes three species with diagnostic rbcL and cox1 sequences, Wilsonosiphonia fujiae sp. nov. (the generitype), W. howei comb. nov., and W. indica sp. nov. These three species resemble each other in external morphology, but W. fujiae is distinguished by having two tetrasporangia per segment rather than one, W. indica by having abundant and persistent trichoblasts, and W. howei by having few and deciduous trichoblasts.  相似文献   

3.
Phylogenetic analyses of rbcL gene sequences and of concatenated rbcL, psbA, and nuclear SSU rRNA gene sequences resolved the generitype of Lithothamnion, L. muelleri, in a clade with three other southern Australian species, L. kraftii sp. nov., L. saundersii sp. nov., and L. woelkerlingii sp. nov. Cold water boreal species currently classified in Lithothamnion and whose type specimens have been sequenced are transferred to Boreolithothamnion gen. nov., with B. glaciale comb. nov. as the generitype. The other species are B. giganteum comb. nov., B. phymatodeum comb. nov., and B. sonderi comb. nov., whose type specimens are newly sequenced, and B. lemoineae comb. nov., B. soriferum comb. nov., and B. tophiforme comb. nov., whose type specimens were already sequenced. Based on rbcL sequences from the type specimens of Lithothamnion crispatum, L. indicum, and L. superpositum, each is recognized as a distinct species and transferred to the recently described Roseolithon as R. crispatum comb. nov., R. indicum comb. nov., and R. superpositum com. nov., respectively. To correctly assign species to these three genera based only on morpho-anatomy, specimens must have multiporate conceptacles and some epithallial cells with flared walls. The discussion provides examples demonstrating that only with phylogenetic analyses of DNA sequences can the evolution of morpho-anatomical characters of non-geniculate corallines be understood and applied at the correct taxonomic rank. Finally, phylogenetic analyses of DNA sequences support recognition of the Hapalidiales as a distinct order characterized by having multiporate tetra/bisporangial conceptacles, and not as a suborder of Corallinales whose tetra/bisporangial conceptacles are uniporate.  相似文献   

4.
Molecular phylogenetic analyses of 18S rDNA (SSU) gene sequences confirm the placement of Crusticorallina gen. nov. in Corallinoideae, the first nongeniculate genus in an otherwise geniculate subfamily. Crusticorallina is distinguished from all other coralline genera by the following suite of morpho‐anatomical characters: (i) sunken, uniporate gametangial and bi/tetrasporangial conceptacles, (ii) cells linked by cell fusions, not secondary pit connections, (iii) an epithallus of 1 or 2 cell layers, (iv) a hypothallus that occupies 50% or more of the total thallus thickness, (v) elongate meristematic cells, and (vi) trichocytes absent. Four species are recognized based on rbcL, psbA and COI‐5P sequences, C. painei sp. nov., the generitype, C. adhaerens sp. nov., C. nootkana sp. nov. and C. muricata comb. nov., previously known as Pseudolithophyllum muricatum. Type material of Lithophyllum muricatum, basionym of C. muricata, in TRH comprises at least two taxa, and therefore we accept the previously designated lectotype specimen in UC that we sequenced to confirm its identity. Crusticorallina species are very difficult to distinguish using morpho‐anatomical and/or habitat characters, although at specific sites, some species may be distinguished by a combination of morpho‐anatomy, habitat and biogeography. The Northeast Pacific now boasts six coralline endemic genera, far more than any other region of the world.  相似文献   

5.
Chlamydomonas (Cd.) is one of the largest but most polyphyletic genera of freshwater unicellular green algae. It consists of 400–600 morphological species and requires taxonomic revision. Toward reclassification, each morphologically defined classical subgenus (or subgroup) should be examined using culture strains. Chlamydomonas subg. Amphichloris is characterized by a central nucleus between two axial pyrenoids, however, the phylogenetic structure of this subgenus has yet to be examined using molecular data. Here, we examined 12 strains including six newly isolated strains, morphologically identified as Chlamydomonas subg. Amphichloris, using 18S rRNA gene phylogeny, light microscopy, and mitochondria fluorescent microscopy. Molecular phylogenetic analyses revealed three independent lineages of the subgenus, separated from the type species of Chlamydomonas, Cd. reinhardtii. These three lineages were further distinguished from each other by light and fluorescent microscopy—in particular by the morphology of the papillae, chloroplast surface, stigmata, and mitochondria—and are here assigned to three genera: Dangeardinia emend., Ixipapillifera gen. nov., and Rhysamphichloris gen. nov. Based on the molecular and morphological data, two to three species were recognized in each genus, including one new species, I. pauromitos. In addition, Cd. deasonii, which was previously assigned to subgroup “Pleiochloris,” was included in the genus Ixipapillifera as I. deasonii comb. nov.  相似文献   

6.
7.
A multigene phylogeny using COI‐5P (mitochondrial cytochrome c oxidase subunit 1), psbA (PSII reaction center protein D1), and EF2 (elongation factor 2) sequence data for members of the tribe Corallineae was constructed to assess generic boundaries. We determined that traditional reliance on conceptacle position as an indicator of generic affinities in the Corallineae is not supported and taxonomic changes are required. We found that species currently assigned to Pseudolithophyllum muricatum resolved within the Corallineae in all analyses. This is the first record of crustose members in the subfamily Corallinoideae. Further‐more, the genus Serraticardia was polyphyletic; we propose to synonomize Serraticardia with Corallina, transfer the type species Smaxima to Corallina (Cmaxima (Yendo) comb. nov.), and describe the new genus Johansenia for Smacmillanii (Jmacmillanii (Yendo) comb. nov.). Our molecular data also indicate that species in the genus Marginisporum have evolutionary affinities among species of Corallina and these genera should also be synonymized. This necessitates the combinations Caberrans (Yendo) comb. nov. for Maberrans (Yendo) Johansen & Chihara, Ccrassissima (Yendo) comb. nov. for M. crassissimum (Yendo) Ganesan, and C. declinata (Yendo) comb. nov. for M. declinata (Yendo) Ganesan. Corallina elongata was divergent from all other members of Corallina and is transferred to a new genus, Ellisolandia (E. elongata (J. Ellis & Solander) comb. nov). In addition, COI‐5P and internal transcribed spacer (ITS) data combined with morphological characters were used to establish that rather than the four Corallina species recognized in Canada, there are nine.  相似文献   

8.
Historically, the genus Calothrix included all noncolonial, tapered, heterocytous filaments within the cyanobacteria. However, recent molecular phylogenies show that “Calothrix” defined in this sense represents five distinct clades. The type species of Calothrix is marine, with solitary basal heterocytes, no akinetes, and distal ends tapering abruptly into short hairs. We examined the morphology and phylogeny of 45 tapering cyanobacteria in the Rivulariaceae, including freshwater and marine representatives of both Calothrix (35 strains) and its sister taxon Rivularia (10 strains). The marine Calothrix fall into two lineages, but we lack the generitype and so cannot identify the clade corresponding to the type species. The freshwater and soil Calothrix fall into the C. parietina clade and are characterized by having a basal heterocyte, no akinetes, and gradual tapering—but not into a long hyaline hair. Macrochaete gen. nov. is a freshwater taxon sister to the Calothrix lineages but clearly separated from Rivularia. The species in this genus differ morphologically from Calothrix by their ability to produce two heteromorphic basal heterocytes and specific secondary structures of the 16S–23S ITS. An additional feature present in most species is the presence of a distal, long hyaline hair, but this character has incomplete penetrance due to its expression only under specific environmental conditions (low phosphate), and in one species appears to be lost. We recognize three species: M. psychrophila (type species) from cold environments (high mountains, Antarctica), M. santannae from wet walls of subtropical South America, and M. lichenoides, a phycobiont of lichens from Europe.  相似文献   

9.
DNA sequences from type material in the nongeniculate coralline genus Lithophyllum were used to unambiguously link some European species names to field‐collected specimens, thus providing a great advance over morpho‐anatomical identifi‐cation. In particular, sequence comparisons of rbcL, COI and psbA genes from field‐collected specimens allowed the following conclusion: the generitype species, L. incrustans, occurs mostly as subtidal rhodoliths and crusts on both Atlantic and Mediterranean coasts, and not as the common, NE Atlantic, epilithic, intertidal crust reported in the literature. The heterotypic type material of L. hibernicum was narrowed to one rhodolith belonging in Lithophyllum. As well as occurring as a subtidal rhodolith, L. hibernicum is a common, epilithic and epizoic crust in the intertidal zone from Ireland south to Mediterranean France. A set of four features distinguished L. incrustans from L. hibernicum, including epithallial cell diameter, pore canal shape of sporangial conceptacles and sporangium height and diameter. An rbcL sequence of the lectotype of Lithophyllum bathyporum, which was recently proposed to accommodate Atlantic intertidal collections of L. incrustans, corresponded to a distinct taxon hitherto known only from Brittany as the subtidal, bisporangial, lectotype, but also occurs intertidally in Atlantic Spain. Specimens from Ireland and France morpho‐anatomically identified as L. fasciculatum and a specimen from Cornwall likewise identified as L. duckerae were resolved as L. incrustans and L. hibernicum, respectively.  相似文献   

10.
We have undertaken a comprehensive, molecular‐assisted alpha‐taxonomic examination of the rhodophyte family Liagoraceae sensu lato, a group that has not previously been targeted for molecular studies in the western Atlantic. Sequence data from three molecular markers indicate that in Bermuda alone there are 10 species in nine different genera. These include the addition of three genera to the flora — Hommersandiophycus, Trichogloeopsis, and Yamadaella. Liagora pectinata, a species with a type locality in Bermuda, is phylogenetically allied with Indo‐Pacific species of Hommersandiophycus, and the species historically reported as L. ceranoides for the islands is morphologically and genetically distinct from that taxon, and is herein described as L. nesophila sp. nov. Molecular sequence data have also uncovered the Indo‐Pacific L. mannarensis in Bermuda, a long‐distance new western Atlantic record. DNA sequences of Trichogloeopsis pedicellata from the type locality (Bahamas) match with local specimens demonstrating its presence in Bermuda. We described Yamadaella grassyi sp. nov. from Bermuda, a species phylogenetically and morphologically distinct from the generitype, Y. caenomyce of the Indo‐Pacific. Our data also indicated a single species each of Ganonema, Gloiocallis, Helminthocladia, Titanophycus, and Trichogloea in the flora.  相似文献   

11.
12.
Two populations of Rivularia‐like cyanobacteria were isolated from ecologically distinct and biogeographically distant sites. One population was from an unpolluted stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the Grand Staircase‐Escalante National Monument, a desert park‐land in Utah. Though both were virtually indistinguishable from Rivularia in field and cultured material, they were both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S rRNA and rbcLX phylogenies. We here name the new cryptic genus Cyanomargarita gen. nov., with type species C. melechinii sp. nov., and additional species C. calcarea sp. nov. We also name a new family for these taxa, the Cyanomargaritaceae.  相似文献   

13.
Adeylithon gen. nov. with one species, A. bosencei sp. nov., belonging to the subfamily Hydrolithoideae is described from Pacific coral reefs based on psbA sequences and morpho‐anatomy. In contrast with Hydrolithon, A. bosencei showed layers of large polygonal “cells,” which resulted from extensive lateral fusions of perithallial cells, interspersed among layers of vegetative cells. This anatomical feature is shared with the fossil Aethesolithon, but lacking DNA sequences from the fossils and the fragmentary nature of Aethesolithon type material, we cannot ascertain if Adeylithon and Aethesolithon are congeneric. Morpho‐anatomical features of A. bosencei were generally congruent with diagnostic features of the subfamily Hydrolithoideae: (i) outline of cell filaments entirely lost in large portions due to pervasive and extensive cell fusions, (ii) trichocytes not arranged in tightly packed horizontal fields, (iii) basal layer without palisade cells, and (iv) cells lining the canal pore oriented more or less perpendicular to roof surface and not protruding into the canal. However, it showed a predominant monomerous thallus organization and trichocytes were disposed in large pustulate, horizontal fields, although they were not tightly packed and did not become distinctly buried in the thallus. Only mature tetrasporangial conceptacles were observed, therefore the type of conceptacle roof formation remained undetermined. Adeylithon bosencei occurs on shallow coral reefs, in Australia, Papua New Guinea, and South Pacific islands (Fiji, Vanuatu). Fossil Aethesolithon is considered an important component of shallow coral reefs since the Miocene; fossil records showed a broad Indo‐Pacific distribution, but a long‐term process of range contraction in the last 2.6 million years, resulting in an overlap with the distribution of the extant Adeylithon. While the congeneric nature of extant and fossil taxa remained uncertain, similarities in morpho‐anatomy, habitat, and distribution may indicate that both taxa likely shared a common ancestor.  相似文献   

14.
15.
The genus Balechina (=subgenus Pachydinium) was established for heterotrophic gymnodinioid dinoflagellates with a thick cell covering. The type species, B. pachydermata (=Gymnodinium pachyderm‐atum), showed numerous fine longitudinal striae, whereas B. coerulea (=G. coeruleum) showed ~24 prominent longitudinal surface ridges or furrows and a distinctive blue pigmentation. We have investigated the morphology and molecular phylogeny of these taxa and the species Gymnodinium cucumis, G. lira and G. amphora from the western Mediterranean, Brazil and Japan. Sudden contractions at the cingulum level were seen in B. pachydermata, which also showed a high morphological variability which included morphotypes that have been described as Amphidinium vasculum, G. amphora, G. dogielii and G. gracile sensu Kofoid and Swezy. Molecular phylogeny based on small subunit rRNA gene sequences revealed that Balechina coerulea, G. cucumis and G. lira formed a clade distantly related to the clade of the type species, B. pachydermata, and G. amphora. We propose the new genus Cucumeridinium for the species with longitudinal ridges and a circular apical groove (Cucumeridinium coeruleum comb. nov., C. lira comb. nov. and C. cucumis comb. nov.), and Gymnodinium canus and G. costatum are considered synonyms of C. coeruleum. The genus Balechina remains for the species with a double‐layer cell covering, bossed surface with fine striae, and an elongated elliptical apical groove. At present, the genus is monotypic containing only B. pachydermata.  相似文献   

16.
Symbiotic interactions between pelagic hosts and microalgae have received little attention, although they are widespread in the photic layer of the world ocean, where they play a fundamental role in the ecology of the planktonic ecosystem. Polycystine radiolarians (including the orders Spumellaria, Collodaria and Nassellaria) are planktonic heterotrophic protists that are widely distributed and often abundant in the ocean. Many polycystines host symbiotic microalgae within their cytoplasm, mostly thought to be the dinoflagellate Scrippsiella nutricula, a species originally described by Karl Brandt in the late nineteenth century as Zooxanthella nutricula. The free‐living stage of this dinoflagellate has never been characterized in terms of morphology and thecal plate tabulation. We examined morphological characters and sequenced conservative ribosomal markers of clonal cultures of the free‐living stage of symbiotic dinoflagellates isolated from radiolarian hosts from the three polycystine orders. In addition, we sequenced symbiont genes directly from several polycystine‐symbiont holobiont specimens from different oceanic regions. Thecal plate arrangement of the free‐living stage does not match that of Scrippsiella or related genera, and LSU and SSU rDNA‐based molecular phylogenies place these symbionts in a distinct clade within the Peridiniales. Both phylogenetic analyses and the comparison of morphological features of culture strains with those reported for other closely related species support the erection of a new genus that we name Brandtodinium gen. nov. and the recombination of S. nutricula as B. nutricula comb. nov.  相似文献   

17.
The diversity of the bladed species of the red algal order Bangiales from the Iberian Mediterranean shores has been reassessed after a detailed study of this region. Prior to this study, 11 bladed species of Bangiales had been reported from Mediterranean waters: Porphyra atropurpurea, P. cordata, P. coriacea, P. dioica, P. linearis, P. purpurea, P. umbilicalis, Pyropia leucosticta, Pyropia koreana (as P. olivii), Py. elongata (as P. rosengurttii) and Py. suborbiculata. A combined analysis of the nuclear nSSU and the plastid rbcL genes together with detailed morphological studies has confirmed the presence of species within the genera Porphyra and Pyropia and also revealed a third, undescribed genus, Themis gen. nov. Porphyra linearis, Pyropia elongata and the introduced Pyropia koreana had been previously listed for the Mediterranean and were recorded in this study. An additional four species, including the introduced Pyropia suborbiculata and three new species: Pyropia parva sp. nov., Themis ballesterosii sp. nov., and Themis iberica sp. nov. were also observed. Hence, most of the Porphyra species traditionally reported along these shores were not reported in this survey. This new floristic Bangiales composition confirms the importance of the Mediterranean basin as a hotspot for biodiversity, possible endemics of ancient origin and high proportion of introductions. Our data also continue to confirm the extent of Bangiales diversity at regional and worldwide levels.  相似文献   

18.
Type material of Navicula kotschyi was studied, and this species was transferred to Dorofeyukea gen. nov. as D. kotschyi comb. nov. Dorofeyukea was described on the basis of DNA sequence and morphological data. Additional species assigned to this genus that were previously included in Navicula include: D. ancisa comb. nov., D. grimmei comb. nov., D. ivatoensis comb. nov., D. orangiana comb. nov., D. rostellata comb. nov. & stat. nov., D. savannahiana comb. nov., D. tenuipunctata comb. nov., and D. texana comb. nov. All Dorofeyukea species share the same morphological features, including having a narrow stauroid fascia surrounded by 1–3 irregularly shortened striae, uniseriate, and weakly radiate striae, circular, or rectangular puncta in the striae that are covered internally by dome‐shaped hymenes, presence of a pseudoseptum at each apex and absence of septa. Partial DNA sequences of SSU and rbcL loci show Dorofeuykae belongs to the clade of stauroneioid diatoms together with Stauroneis, Prestauroneis, Craticula, Karayevia, Madinithidium, Fistulifera, Parlibellus, and, possibly, Schizostauron. A new species from the monoraphid genus Madinithidium, M. vietnamica sp. nov., was described based on valve and chloroplast morphology as well as DNA sequence data.  相似文献   

19.
20.
Based upon COI‐5P, LSU rDNA, and rbcL sequence data and morphological characteristics, six new members of the noncalcified crustose genus of red algae Ethelia are described in a new family, Etheliaceae (Gigartinales), sister to the recently described Ptilocladiopsidaceae. The novel species are described from subtropical to tropical Atlantic and Indo‐Pacific Ocean basins; E. mucronata sp. nov. and E. denizotii sp. nov. from southern and northern Western Australia respectively, E. wilcei sp. nov. from the Cocos (Keeling) Islands of Australia, E. suluensis sp. nov. from the Philippines, E. umbricola sp. nov. from Bermuda and E. kraftii sp. nov. from Lord Howe Island, Australia. The generitype, Ethelia biradiata, originally reported from the Seychelles, Indian Ocean, is added to the Western Australian flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号