首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse mitochondrial superoxide dismutase locus is on chromosome 17   总被引:5,自引:0,他引:5  
The hamster × mouse hybridoma cell line GCL28 carries only one copy of mouse chromosome 17 but expresses H-2 antigens controlled by the major histocompatibility complex of the mouse. The cell line and clones derived from it were subjected to treatment with H-2-specific antisera and complement and a series of H-2-antigen-negative clones was produced. Typing of the clones for the mouse enzyme glyoxalase 1, which is encoded by an H-2-linked gene, revealed that the loss of H-2-antigen expression was accompanied by the loss of chromosome 17 in these clones. This suggestion was verified by karyotype analysis of selected clones. Typing of the clones and subclones for the mouse mitochondrial superoxide dismutase (SOD-2) indicated complete concordance between loss of chromosome 17 and loss of SOD-2 activity. This finding suggests that the locus controlling the expression of SOD-2 is located on chromosome 17. Since a similar locus in the human is linked to HLA, the human major histocompatibility complex, extensive homology must exist between the mouse and human MHC-bearing chromosomes.  相似文献   

2.
Five cosmid clones, isolated by procedures to screen genomic libraries for homologous variants of the human prohibitin gene (PHB), were analyzed to determine their genomic structures. Four of these (PHBP1-4) were found to be processed pseudogenes, each located on a different chromosome from their counterparts on chromosome 17q21. The DNA sequence of one clone (PHBP1, on chromosome 6q25) shared a 91.3% identity at the nucleotide level with the cDNA of functional prohibitin. A large number of human tumors of the breast, ovary, liver, and lung were examined for somatic mutations in the PHB gene. Although mutations were observed in a few sporadic breast cancers, none were identified in any of the other cancers.  相似文献   

3.
Rodent cells were hybridized with owl monkey (Aotus) cells of karyotypes II, III, V, and VI. Aotus-rodent somatic hybrid lines preferentially segregating Aotus chromosomes were selected to determine the chromosomal location of the major histocompatibility complex and other genes with which it is syntenic in man. Based on correlation between concordant segregation of the chromosome as visualized by G-banding and expression of the Aotus antigens or enzymes in independent Aotus-rodent hybrid clones, we have assigned Aotus gene loci for the MHC, GLO, ME1, SOD2, and PGM3 to Aotus chromosome 9 of karyotype VI (2n=49/50), chromosome 10 of karyotype V (2n=46), and chromosome 7 of karyotypes II and III (2n = 54 and 53). On the basis of banding patterns we previously postulated that these chromosomes of the different karyotypes were homologous. The gene assignments reported here provide independent evidence for that hypothesis. Aotus chromosomes 9 (K-VI), 10 (K-V), and 7 (K-II, III) are homologous to human chromosome 6 in that they all code for the MHC, GLO, ME1, SOD2, and PGM3. The structural differences between these homologous chromosomes probably resulted from a pericentric inversion.Abbreviations used in this paper MHC major histocompatibility complex - HLA human lymphocyte antigen - PGM3 phosphoglucomutase-3 - ME1 cytoplasmic malic enzyme-1 - SOD2 superoxide dismutase-B - GLO glyoxalase 1 - OMLA owl monkey leukocyte antigens - K karyotype - 2-M 2-microglobulin - DMEM Dulbecco's modification of Eagle's medium - PEG polyethylene glycol - HAT hypoxanthine, aminopterin, and thymidine - KC1 potassium chloride - G-band-trypsin Giemsa band  相似文献   

4.
Leishmania infantum glyoxalase II shows absolute specificity towards its trypanothione thioester substrate. In the previous work, we performed a comparative analysis of glyoxalase II structures determined by X-ray crystallography which revealed that Tyr291 and Cys294, absent in the human homologue, are essential for substrate binding. To validate this trypanothione specificity hypothesis we produced a mutant L. infantum GLO2 enzyme by replacing Tyr291 and Cys294 by arginine and lysine, respectively. This new enzyme is capable to use the glutathione thioester substrate, with kinetic parameters similar to the ones from the human enzyme. Substrate specificity is likely to be mediated by spermidine moiety binding, providing a primer for understanding the molecular basis of trypanothione specificity.  相似文献   

5.
Summary Leukemic cells with reciprocal translocations involving 11p13 and 14q13 were obtained from two patients with T-cell acute lymphoblastic leukemia and fused with mouse Ltk- cells. DNA from independent hybrid clones was screened by Southern blot and hybridization to molecular probes for the human catalase and Ha-ras-1 genes. Several clones showed segregation of these two genes, indicating the presence of either the der 11 or der 14 human chromosomes. When DNA from these hybrid clones was examined for the presence of the human genes for calcitonin and γ-globin, both genes were found to segregate with the Ha-ras-1 gene and the der14 chromosome indicating that they lie distal to catalase. When the hybrid clones were examined for the presence of human lactate dehydrogenase A (LDH A) activity, only those clones containing the der14 chromosome expressed activity indicating that the LDH A gene is also distal to catalase on the short arm of chromosome 11.  相似文献   

6.
Glyoxalase II participates in the cellular detoxification of cytotoxic and mutagenic 2-oxoaldehydes. Because of its role in chemical detoxification, glyoxalase II has been studied as a potential anti-cancer and/or anti-protozoal target; however, very little is known about the active site and reaction mechanism of this important enzyme. To characterize the active site and kinetic mechanism of the enzyme, a detailed mutational study of Arabidopsis glyoxalase II was conducted. Data presented here demonstrate for the first time that the cytoplasmic form of Arabidopsis glyoxalase II contains an iron-zinc binuclear metal center that is essential for activity. Both metals participate in substrate binding, transition state stabilization, and the hydrolysis reaction. Subtle alterations in the geometry and/or electrostatics of the binuclear center have profound effects on the activity of the enzyme. Additional residues important in substrate binding have also been identified. An overall reaction mechanism for glyoxalase II is proposed based on the mutational and kinetic data from this study and crystallographic data on human glyoxalase II. Information presented here provides new insights into the active site and reaction mechanism of glyoxalase II that can be used for the rational design of glyoxalase II inhibitors.  相似文献   

7.
S-D-lactoylglutathione in resting and activated human neutrophils   总被引:1,自引:0,他引:1  
Zymosan particles opsonised with human serum factors functionally activate human neutrophils and induce a substantial modification of the human neutrophil cytosolic glyoxalase system. The activity of glyoxalase I increases and the activity of glyoxalase II decreases by 20-40% of their resting cell activities during the initial 10 min of activation. The cellular concentration of the glyoxalase intermediate S-D-lactoylglutathione increases by ca. 100% of resting cell levels during this period. This modification may be related to the ability of S-D-lactoylglutathione to stimulate the assembly of microtubules.  相似文献   

8.
To obtain new RFLP markers on human chromosome 11 for a high-resolution map, we constructed a cosmid library from a Chinese hamster x human somatic hybrid cell line that retains only human chromosome 11 in a Chinese hamster genomic background. A total of 3,500 cosmids were isolated by colony hybridization with labeled human genomic DNA. DNA was prepared from 130 of these cosmid clones and examined for RFLP. In 62 of them, polymorphism was detected with one or more enzymes; four RFLPs were VNTR systems. All polymorphic clones were assigned to one of 22 intervals obtained by mapping on a deletion panel of 15 somatic hybrid cell lines containing parts of chromosome 11; 11 clones were finely mapped by in situ hybridization. Although RFLP markers were scattered on the whole chromosome, they were found predominantly in the regions of R-banding. These DNA markers will contribute to fine mapping of genes causing inherited disorders and tumor-suppressor genes that reside on chromosome 11. Furthermore, as one-third of the cosmid clones revealed a band or bands in Chinese hamster DNA, indicating sequence conservation, this subset of clones may be useful for isolating biologically important genes on chromosome 11.  相似文献   

9.
Yeast glyoxalase I is a monomeric enzyme with two active sites   总被引:3,自引:0,他引:3  
The tertiary structure of the monomeric yeast glyoxalase I has been modeled based on the crystal structure of the dimeric human glyoxalase I and a sequence alignment of the two enzymes. The model suggests that yeast glyoxalase I has two active sites contained in a single polypeptide. To investigate this, a recombinant expression clone of yeast glyoxalase I was constructed for overproduction of the enzyme in Escherichia coli. Each putative active site was inactivated by site-directed mutagenesis. According to the alignment, glutamate 163 and glutamate 318 in yeast glyoxalase I correspond to glutamate 172 in human glyoxalase I, a Zn(II) ligand and proposed general base in the catalytic mechanism. The residues were each replaced by glutamine and a double mutant containing both mutations was also constructed. Steady-state kinetics and metal analyses of the recombinant enzymes corroborate that yeast glyoxalase I has two functional active sites. The activities of the catalytic sites seem to be somewhat different. The metal ions bound in the active sites are probably one Fe(II) and one Zn(II), but Mn(II) may replace Zn(II). Yeast glyoxalase I appears to be one of the few enzymes that are present as a single polypeptide with two active sites that catalyze the same reaction.  相似文献   

10.
Methylglyoxal is a ketoaldehyde that reacts readily under physiological conditions with biologically relevant ligands, such as amine and sulfhydryl groups. It is produced in mammalian cells primarily as a by-product of glycolysis. The level of glucose, L-glutamine and fetal bovine serum in culture media was found to significantly affect levels of intracellular methylglyoxal in Chinese hamster ovary cells. Medium with 25 mM glucose and 5 mM L-glutamine caused an increase in free methylglyoxal levels of 90 to 100% relative to medium containing 5 mM glucose and 2 mM L-glutamine. Both of these media compositions are representative of those found in commercially available media. Pseudomonas putida glyoxalase I was expressed in Chinese hamster ovary cells to enhance methylglyoxal detoxification. The Chinese hamster ovary cell clones showed an 80 to 90% decrease in free methylglyoxal levels. The colony-forming ability of these cells was compared to wild-type Chinese hamster ovary cells under conditions found to cause elevated methylglyoxal levels. The wild-type cells showed a 10% decrease in colony-forming ability relative to the clones. This decrease was found to be statistically significant (P>0.99) by analysis of variance. The variation in colony-forming ability amongst the clones was statistically insignificant. More importantly, the clones shoed increased colony-forming ability relative to the wild-type cells under conditions of higher methylglyoxal production with fair to good statistical significance (P>0.75 to P>0.95). This result is the first quantifiable evidence that endogenously produced methylglyoxal can negatively affect cell function under conditions found in animal cell culture.Abbreviations ANOVA analysis of variance - CHO Chinese hamster ovary cells - CFA colony-forming ability - dhfr gene for dihydrofolate reductase - DHAP dihydroxyacetone phosphate - FBS fetal bovine serum - G-3-P glyceraldehyde-3-phosphate - GloI glyoxalase I - GloII glyoxalase II - GSH reduced glutathione - HPLC high-performance liquid chromatography - IMDM Iscove's modified Dulbecco's medium - MTX methotrexate - 2-MQ 2-methylquinoxaline - 5-MQ 5-methylquinoxaline - MEM minimal essential medium - Pi inorganic phosphate - PCA perchloric acid - o-PD o-phenylenediamine  相似文献   

11.
Kinetics of cytosolic recombinant human glyoxalase II and bovine liver mitochondrial glyoxalase II were studied in the presence of liposomes made of different phospholipids (PLs). Neutral PLs such as egg phosphatidylcholine or dipalmitoylphosphatidylcholine did not affect the enzymatic activity of either enzymatic form. Liposomes made of dioleoyl phosphatidic acid or cardiolipin or phosphatidylserine also did not affect the enzymatic activity of mitochondrial glyoxalase II. Conversely, these negatively charged PLs exerted noncompetitive inhibition on cytosolic glyoxalase II only, dioleoyl phosphatidic acid and bovine brain phosphatidylserine exerting the highest and lowest inhibition, respectively. Binding studies, carried out by using a resonant mirror biosensor, revealed that liposomes made of negatively charged PLs interact specifically with both enzymatic forms of glyoxalase II, whereas interactions were not detected with neutral PLs. Once bound on glyoxalase II, negatively charged liposomes could not be removed by 3 M NaCl, suggesting that interactions between glyoxalase II and negatively charged PLs, besides ionic, may be also hydrophobic. These data suggest a possible role of negatively charged phospholipids in the regulation of level of lactoylglutathione in the cell. The data are also discussed in terms of a possible regulation of reduced glutathione supply to mitochondria.  相似文献   

12.
Earlier we have shown the role of glyoxalase overexpression in conferring salinity tolerance in transgenic tobacco. We now demonstrate the feasibility of same in a crop like rice through overproduction of glyoxalase II. The rice glyoxalase II was cloned in pCAMBIA1304 and transformed into rice (Oryza sativa cv PB1) via Agrobacterium. The transgenic plants showed higher constitutive activity of glyoxalase II that increased further upon salt stress, reflecting the upregulation of endogenous glyoxalase II. The transgenic rice showed higher tolerance to toxic concentrations of methylglyoxal (MG) and NaCl. Compared with non-transgenics, transgenic plants at the T1 generation exhibited sustained growth and more favorable ion balance under salt stress conditions. Sneh L. Singla-Pareek and Sudesh Kumar Yadav have contributed equally to this work.  相似文献   

13.
The recently cloned human breast and ovarian cancer suseptibility gene,BRCA1, is located on human chromosome 17q21. We have isolated murine genomic clones containingBrca1 as a first step in generating a mouse model for the loss ofBRCA1 function. A mouse genomic library was screened using probes corresponding to exon 11 of the humanBRCA1 gene. Two overlapping mouse clones were identified that hybridized to humanBRCA1 exons 9–12. Sequence analysis of 1.4 kb of the region of these clones corresponding to part of human exon 11 revealed 72% nucleic acid identity but only 50% amino acid identity with the human gene. The longest of the mouseBrca1 genomic clones maps to chromosome 11D, as determined by two-color fluorescence in situ hybridization. The synteny to human chromosome 17 was confirmed by cohybridization with the mouse probe for the NF1-gene. This comparative study confirms that the relative location of theBRCA1 gene has been conserved between mice and humans.  相似文献   

14.
EagI and NotI linking libraries were prepared in the lambda vector, EMBL5, from the mouse-human somatic cell hybrid 1W1LA4.9, which contains human chromosomes 11 and Xp as the only human component. Individual clones containing human DNA were isolated by their ability to hybridise with total human DNA and digested with SalI and EcoRI to identify the human insert size and single-copy fragments. The mean (± SD) insert sizes of the EagI and NotI clones were 18.3 ± 3.2 kb and 16.6 ± 3.6 kb, respectively. Regional localisation of 66 clones (52 EagI, 14 NotI) was achieved using a panel of 20 somatic cell hybrids that contained different overlapping deletions of chromosomes 11 or Xp. Thirty-nine clones (36 EagI, 3 NotI) were localised to chromosome 11; 17 of these were clustered in 11q13 and another nine were clustered in 11q14–q23.1. Twenty-seven clones (16 EagI, 11 NotI) were localised to Xp and 10 of these were clustered in Xp11. The 66 clones were assessed for seven different microsatellite repetitive sequences; restriction fragment length polymorphisms for five clones from 11q13 were also identified. These EagI and NotI clones, which supplement those previously mapped to chromosome 11 and Xp, should facilitate the generation of more detailed maps and the identification of genes that are associated with CpG-rich islands. Received: 27 December 1995 / Revised: 30 January 1996  相似文献   

15.
Deswal R  Singh R  Lynn AM  Frank R 《Peptides》2005,26(3):395-404
Glyoxalase I activity has been shown to be directly related to cancer and its inhibitors have been used as anti-cancer drugs. Immunochemical studies have shown immunochemical relatedness among animal and plant glyoxalase I, but its potential application for biomedical research has not been investigated. In order to understand the conserved immunochemical regions of the protein and to determine probable immunomodulation targets, a cellulose-bound scanning peptide library for Brassica juncea glyoxalase I was made using the spot synthesis method. Immuno-probing of the library, using B. juncea anti-glyoxalase I monospecific polyclonal antibodies, revealed three immunodominant regions, epitope I, II, and III. In the homology model of B. juncea glyoxalase I generated by threading its sequence onto the human glyoxalase I, the high accessible surface area and the hydrophilic nature of the epitopes confirmed their surface localization and hence their accessibility for antigen-antibody interaction. Epitopes I and II were specific to B. juncea glyoxalase I. Localizing the epitopes on available glyoxalase I sequences showed that epitope III containing the active site region was conserved across phyla. Therefore, this could be used as a potential immunomodulation target for cancer therapy. Moreover, as the most immunogenic epitopes were mapped on the surface of the protein, this method could be used to discover potential therapeutic targets. It is a simple and fast approach for such investigations. This study, to our knowledge, is the first in epitope mapping of glyoxalase I and has great biomedical potential.  相似文献   

16.
Evidence is presented for the assignment of the gene for dipeptidase 2 to Mus musculus chromosome 18 by synteny testing and karyotypic analysis of Chinese hamster × mouse somatic cell hybrid clones. DIP-2 and chromosome 18 were expressed concordantly in 24/24 clones examined (ten primary clones and 14 secondary clones). Synteny testing indicated that DIP-2 was not expressed concordantly with the expression of any marker enzymes.This work was supported by NIH grant USPHS GM 09966.  相似文献   

17.
The aim of this study was to monitor the influence of proline and betaine exposure on antioxidant and methylglyoxal (MG) detoxification system during cold stress in Camellia sinensis (L.) O. Kuntze. Cold stress enhanced MG and lipid peroxidation levels in tea bud (youngest topmost leaf). This increase was resisted upon the exposure of tea bud to proline and betaine. Exposure of tea bud with proline and betaine also help in maintaining thiol/disulfide ratio during cold stress. Proline exposure enhanced glutathione-S-transferase and glutathione reductase (GR) activity, while betaine exposure increased only GR activity during cold stress. Furthermore, effect of proline/betaine was studied on glyoxalase pathway enzymes that are involved in MG detoxification and comprise of two enzymes glyoxalase I and glyoxalase II. Both proline and betaine showed protective effect on glyoxalase I and activating effect on glyoxalase II during cold stress in tea bud. This investigation, therefore, suggest that proline and betaine might provide protection to cold stress in tea by regulating MG and lipid peroxidation formation as well as by activating or protecting some of antioxidant and glyoxalase pathway enzymes.  相似文献   

18.
The ubiquitous glyoxalase system removes methylglyoxal as a harmful by‐product of glycolysis. Because malaria parasites have drastically increased glycolytic fluxes, they could be highly susceptible to the inhibition of this detoxification pathway. Here we analysed the intracellular localization, oligomerization and inhibition of the glyoxalases from Plasmodium falciparum. Glyoxalase I (GloI) and one of the two glyoxalases II (cGloII) were located in the cytosol of the blood stages. The second glyoxalase II (tGloII) was detected in the apicoplast pointing to alternative metabolic pathways. Using a variety of methods, cGloII was found to exist in a monomer–dimer equilibrium that might have been overlooked for homologues from other organisms and that could be of physiological importance. The compounds methyl‐gerfelin and curcumin, which were previously shown to inhibit mammalian GloI, also inhibited P. falciparum GloI. Inhibition patterns were predominantly competitive but were complicated because of the two different active sites of the enzyme. This effect was neglected in previous inhibition studies of monomeric glyoxalases I, with consequences for the interpretation of inhibition constants. In summary, the present work reveals novel general glyoxalase properties that future research can build on and provides a significant advance in characterizing the glyoxalase system from P. falciparum.  相似文献   

19.
Using a panel of hybrid clones (common shrew--Chinese hamster and common shrew--mouse), the syntheny and localization of the following genes was determined: genes for alpha-galactosidase (GLA), acid phosphatase (ACP1), and phosphoglycerate kinase (PGK1) on chromosome de; adenosine kinase (ADK) and glucuronidase 2 (GUS2) on chromosome ik; glutamic-oxaloacetic transaminase 2 (GOT2) and peptidase D (PEPD) on chromosome hn; and glyoxalase 1 (GLO1) and phosphoglucomutase 2 (PGM2) on chromosome go. Gene for beta-galactosidase (GLB1) was assigned to arm p of chromosome mp. Thus, including previously mapped genes, the cytogenetic map of the common shrew contains 39 genes. They form seven syntheny groups and mark eight out of ten chromosomes.  相似文献   

20.
《Genomics》1995,29(3)
The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murineBrca1homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouseBrca1locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in theBrca1locus was identified and used to map this gene on a (Mus m. musculusCzech II × C57BL/KsJ)F1 × C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murineBrca1homologue rather than a related RING finger gene. The isolation of the mouseBrca1homologue will facilitate the creation of mouse models for germline BRCA1 defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号