首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distal applications of indol-3yl-acetic acid (IAA) to debladed cotyledonary petioles of cotton (Gossypium hirsutum L.) seedlings greatly delayed petiole abscission, but similar applications of phenylacetic acid (PAA) slightly accelerated abscission compared with untreated controls. Both compounds prevented abscission for at least 91 h when applied directly to the abscission zone at the base of the petiole. The contrasting effects of distal IAA and PAA on abscission were correlated with their polar transport behaviour-[1-14C]IAA underwent typical polar (basipetal) transport through isolated 30 mm petiole segments, but only a weak diffusive movement of [1-14C]PAA occurred.Removal of the shoot tip substantially delayed abscission of subtending debladed cotyledonary petioles. The promotive effect of the shoot tip on petiole abscission could be replaced in decapitated shoots by applications of either IAA or PAA to the cut surface of the stem. Following the application of [1-14C]IAA or [1-14C]PAA to the cut surface of decapitated shoots, only IAA was transported basipetally through the stem. Proximal applications of either compound stimulated the acropetal transport of [14C]sucrose applied to a subtending intact cotyledonary leaf and caused label to accumulate at the shoot tip. However, PAA was considerably less active than IAA in this response.It is concluded that whilst the inhibition of petiole abscission by distal auxin is mediated by effects of auxin in cells of the abscission zone itself, the promotion of abscission by the shoot tip (or by proximal exogenous auxin) is a remote effect which does not require basipetal auxin transport to the abscission zone. Possible mechanisms to explain this indirect effect of proximal auxin on abscission are discussed.  相似文献   

2.
When [1-14C]indol-3yl-acetic acid ([1-14C]IAA) was applied to the upper surface of a mature foliage leaf of garden pea (Pisum sativum L. cv. Alderman), 14C effluxed basipetally but not acropetally from 30-mm-long internode segments excised 4 h after the application of [1-14C]IAA. This basipetal efflux was strongly inhibited by the inclusion of 3.10–6 mol· dm3 N-1-naphthylphthalamic acid (NPA) in the efflux buffer. In contrast, when [14C] sucrose was applied to the leaf, the efflux of label from stem segments excised subsequently was neither polar nor sensitive to NPA. The [1-14C]IAA was initially exported from mature leaves in the phloem — transport was rapid and apolar; label was recovered from aphids feeding on the stem; and label was recovered in exudates collected from severed petioles in 20 mM ethylenediaminetetraacetic acid. No 14C was detected in aphids feeding on the stems of plants to which [1-14C]IAA had been applied apically, even though the internode on which they were feeding transported considerable quantities of label. Localised applications of NPA to the stem strongly inhibited the basipetal transport of apically applied [1-14C]IAA, but did not affect transport of [1-14C]IAA in the phloem. These results demonstrate for the first time that IAA exported from leaves in the phloem can be transferred into the extravascular polar auxin transport pathway but that reciprocal transfer probably does not occur. In intact plants, transfer of foliar-applied [1-14C]IAA from the phloem to the polar auxin transport pathway was confined to immature tissues at the shoot apex. In plants in which all tissues above the fed leaf were removed before labelling, a limited transfer of IAA occurred in more mature regions of the stem.Abbreviations IAA indol-3yl-acetic acid - EDTA ethylenediaminetetraacetic acid - NPA N-1-naphthylphthalamic acid We are grateful to the Nuffield Foundation for supporting this research under the NUF-URB95 scheme and for the provision of a bursary to A.J.C. We thank Professor Dennis A. Baker for constructive comments on a draft of this paper and Mrs. Rosemary Bell for her able technical assistance.  相似文献   

3.
Sjut  V.  Bangerth  F. 《Plant Growth Regulation》1982,1(4):243-251
Ethylene, indol-3-acetic acid (IAA), gibberellin-like substances (GAs) and abscisic acid (ABA) were analysed in extracts from normal, seed-containing and parthenocarpic tomato fruits throughout fruit development. Parthenocarpic fruit growth was induced with an auxin (4-CPA), morphactin (CME) or gibberellic acid (GA3) and compared with that of pollinated control fruits. Fruit growth was only affected by the treatment with GA3, decreasing size and fresh weight by 60%. The peak sequence of hormones during fruit development was ethylene-GAs-IAA-ABA. Seeded fruits contained the highest levels of IAA and ABA but the lowest levels of GAs. Also, in seeded fruits, a high proportion of IAA and ABA was found in the seeds whereas this was not the case for GAs.Hormone levels of tomato fruits may be successfully, easily and reproducibly altered by inducing parthenocarpic fruit growth and thus eliminating development of seeds which are a major source of hormone synthesis. In spite of markedly changed hormone levels, there was no obvious relationship between fruit growth and extractable hormones per se. However, the results indicate that a high ratio of GAs: auxins is unfavourable for growth of tomato fruits.  相似文献   

4.
The possibility was investigated that the inhibition of rooting in pea ( Pisum sativum L. cv. Weibull's Marma) cuttings caused by low indol-3yl-acetic acid (IAA) concentrations is due to ethylene produced as a result of IAA treatment. Treatment with 10 uμ IAA reduced the number of roots to about 50% of the control and increased ethylene production in the stem bases by about 20 times the control value during the two first days of treatment. Ethylene-releasing compounds (ethephon and 1-amino-cyclopropane-1-carboxylic acid, ACC), in concentrations giving a similar ethylene release, inhibited rooting to the same extent or more strongly than IAA. These results indicate that IAA-induced ethylene is at least responsible for the negative component in IAA action on root formation in pea cuttings. A higher IAA concentration (100 μ) and indol-3yl-butyric acid efficiently counteracted the negative effect of ethylene on root formation.  相似文献   

5.
The following evidence was obtained for the de novo synthesis of dipeptidase in squash (Cucurbita maxima Duch. var. Hubbard) cotyledons during germination: (i) the amount of [14C]leucine incorporated into the dipeptidase was greater than that found in other proteins; (ii) the enzyme coincided with a peak of radioactivity in DEAE column chromatography; and (iii) the specific radioactivity of the enzyme increased with purification. There was also a positive correlation between the rate of [14C]leucine incorporation into dipeptidase and the rate of dipeptidase development. Four plant growth regulators, gibberellic acid (GA) benzyladenine (BA), indol-3-acetic acid (IAA), and abscisic acid (ABA) were examined for their effect on the development of dipeptidase activity at 5 × 10?6 and 5 × 10?5 M. None of these regulators affected the activity of the isolated dipeptidase per se. In intact see ds, BA and IAA inhibited the development of dipeptidase activity at the higher concentration, ABA reduced the activity at both concentrations; however, GA enhanced its development at the higher concentration. In distal-half cotyledons, BA and GA stimulated enzyme development but they showed no synergistic effect. IAA suppressed the development of enzyme activity at the higher concentration and ABA inhibited development at both levels.  相似文献   

6.
The transport of exogenous indol-3yl-acetic acid (IAA) from the apical tissues of intact, light-grown pea (Pisum sativum L. cv. Alderman) shoots exhibited properties identical to those associated with polar transport in isolated shoot segments. Transport in the stem of apically applied [1-14C]-or [5-3H]IAA occurred at velocities (approx. 8–15 mm·h-1) characteristic of polar transport. Following pulse-labelling, IAA drained from distal tissues after passage of a pulse and the rate characteristics of a pulse were not affected by chases of unlabelled IAA. However, transport of [1-14C]IAA was inhibited through a localised region of the stem pretreated with a high concentration of unlabelled IAA or with the synthetic auxins 1-napthaleneacetic acid and 2,4-dichlorophenoxyacetic acid, and label accumulated in more distal tissues. Transport of [1-14C]IAA was also completely prevented through regions of the intact stem treated with N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid.Export of IAA from the apical bud into the stem increased with total concentration of IAA applied (labelled+unlabelled) but approached saturation at high concentrations (834 mmol·m-3). Transport velocity increased with concentration up to 83 mmol·m-3 IAA but fell again with further increase in concentration.Stem segments (2 mm) cut from intact plants transporting apically applied [1-14C]IAA effluxed 93% of their initial radioactivity into buffer (pH 7.0) in 90 min. The half-time for efflux increased from 32.5 to 103.9 min when 3 mmol·m-3 NPA was included in the efflux medium. Long (30 mm) stem sections cut from immediately below an apical bud 3.0 h after the apical application of [1-14C]IAA effluxed IAA when their basal ends, but not their apical ends, were immersed in buffer (pH 7.0). Addition of 3 mmol·m-3 NPA to the external medium completely prevented this basal efflux.These results support the view that the slow long-distance transport of IAA from the intact shoot apex occurs by polar cell-to-cell transport and that it is mediated by the components of IAA transmembrane transport predicted by the chemiosmotic polar diffusion theory.Abbreviations IAA indol-3yl-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

7.
Our previous investigation of the naturally occurring indolecompounds in barley and tomato shoots suggested that the biosynthesisof indol-3yl-acetic acid (IAA) from tryptophan might proceedvia either the indol-3yl-pyruvic acid or tryptamine pathwaysin both species. The results further indicated that the indol-3yl-lacticacid pathway for IAA formation might also be operative in tomato.In the present study, tryptophan-3-14C and tryptamine-2-14Cwere fed to excised shoots of both barley and tomato, and indol-3yl-lacticacid-3-14C was also fed to shoots of tomato. All three compoundswere found to give rise to radioactive IAA with little dilutionin specific activity. Feeding tryptophan-3-14C also resultedin the labelling of indol-3yl-pyruvic acid, indol-3yl-acetaldehyde,and tryptamine, which were isolated and chemically identifiedfrom both species, and radioactive indol-3yl-lactic acid andtryptophol were also produced in tomato. Indol-3yl-acetaldehydewas found to be labelled in both species after administrationof tryptamine-2-14C, while the principal metabolite of indol-3yl-lacticacid-3-14C was radioactive tryptophan. These findings, alongwith the results from a quantitative study of the radioactivemetabolites, indicate that both the indol-3yl-pyruvic acid andtryptamine pathways can operate in both species, while the formationof IAA from indol-3yl-lactic acid in tomato probably occursindirectly, via tryptophan. These conclusions were supportedby the demonstration of the enzymes, L-tryptophan transaminase,L-trypto-phan decarboxylase, and indol-3yl-acetaldehyde dehydrogenasein cell-free extracts of both tissues, and of indol-3yl-pyruvicacid decarboxylase in the tomato extract. No indol-3yl-lacticacid decarboxylase activity was observed in the extracts fromeither tissue.  相似文献   

8.
Treatment of bean cuttings with 4-chlororesorcinol (4-CR), known to increase the number of roots and extend their distribution, prevented the accumulation of free indol-3-yl-acetic acid (IAA) in the hypocotyls within 24 h after cutting preparation. In mung bean there was no change in the distribution (upper half vs. 1 ower half of the hypocotyl) of IAA within the hypocotyl as a result of the treatment. In bean cuttings the treatment with 4-CR prevented the accumulation of IAA in the bottom of the cutting. Oxidation of IAA as a measure of IAA oxidase activity in bean was enhanced appreciably by 4-chlororesorcinol. The level of abscisic acid in mung bean, on the other hand, remained 3–4 fold higher than in the control, yet still about 50% lower than the zero time level. In untreated mung bean cuttings the activity of peroxidase increased after cutting preparation. In contrast, the activity of peroxidase in 4-Cr-treated cuttings was consistently lower. In order to relate to the effect of exogenously applied auxin the level of peroxidase was measured also in indol-3-yl-butyric acid-treated cuttings. The overall peroxidase activity in IBA-treated cuttings was not affected. However, when assaying for the different isozymes the drop in peroxidase activity was most evident in the inducible basic isoperoxidases both in 4-CR and IBA treatments. It appears that the exposure to 4-CR exerts an effect that is similar to that of exogenously applied auxin, affecting the activity of basic peroxidases and enhancing the oxidation of endogenous IAA, thus allowing the organization of the primordia.Abbreviations ABA - abscisic acid - 4-CR - 4-chlororesorcinol - IAA - indol-3-yl-acetic acid - IBA - indol-3-yl-butyric acid  相似文献   

9.
The transport of [14C]phenylacetic acid (PAA) in intact plants and stem segments of light-grown pea (Pisum sativum L. cv. Alderman) plants was investigated and compared with the transport of [14C]indiol-3yl-acetic acid (IAA). Although PAA was readily taken up by apical tissues, unlike IAA it did not undergo long-distance transport in the stem. The absence of PAA export from the apex was shown not to be the consequence of its failure to be taken up or of its metabolism. Only a weak diffusive movement of PAA was observed in isolated stem segments which readily transported IAA. When [1-14C]PAA was applied to a mature foliage leaf in light, only 5.4% of the 14C recovered in ethanol extracts (89.6% of applied 14C) had been exported from the leaf after 6.0 h. When applied to the corresponding leaf, [14C]sucrose was readily exported (46.4% of the total recovered ethanol-soluble 14C after 6.0 h). [1-14C]phenylacetic acid applied to the root system was readily taken up but, after 5.0 h, 99.3% of the recovered 14C was still in the root system.When applied to the stem of intact plants (either in lanolin at 10 mg·g-1, or as a 10-4 M solution), unlabelled PAA blocked the transport through the stem of [1-14C]IAA applied to the apical bud, and caused IAA to accumulate in the PAA-treated region of the stem. Applications of PAA to the stem also inhibited the basipetal polar transport of [1-14C]IAA in isolated stem segments. These results are consistent with recent observations (C.F. Johnson and D.A. Morris, 1987, Planta 172, 400–407) that no carriers for PAA occur in the plasma membrane of the light-grown pea stem, but that PAA can inhibit the carrier-mediated efflux of IAA from cells. The possible functions of endogenous PAA are discussed and its is suggested that an important role of the compound may be to modulate the polar transport and-or accumulation by cells of IAA.Abbreviations IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - IIBA 2,3,5-triiodobenzoic acid  相似文献   

10.
Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA.  相似文献   

11.
Four-day-old stem segments of Zea mays L. cv. Seneca 60 were treated sequentially with phenolic substances and indole-3-acetic [2-14C] acid ([2-14C]IAA). Formation of bound IAA was rapid, but a pretreatment with p-coumaric acid, ferulic acid or 4-methylumbelliferone decreased the level of bound IAA. The decrease is not likely related to the effect of the phenolics on enzymic oxidation of IAA, since the level of free IAA was not limiting and the activity of ferulic acid in enzymic oxidation of IAA is different from that of p-coumaric acid and 4-methylum-belliferone. Apparently these compounds inhibited the formation of bound IAA and consequently caused an accumulation of free IAA. In contrast, caffeic acid, protocatechuic acid and 2,3-dihydro-2, 2-dimethyl-7-benzofuranol had little effect. After the uptake of IAA there was a slow but steady incorporation of the radioactivity into the 80% ethanol-insoluble, 1 M NaOH-soluble fraction. Phenolic substances also affected this process. The compounds which are cofactors of IAA-oxidase increased the incorporation while those which are inhibitors of IAA-oxidase decreased the incorporation. Results suggest that the phenolics also affected the enzymic oxidation of IAA in vivo in the same way as in vitro.  相似文献   

12.
The characteristics of transmembrane transport of 14C-labelled indol-3yl-acetic acid ([1-14C]IAA) were compared in Chlorella vulgaris Beij., a simple unicellular green alga, and in Chara vulgaris L., a branched, multicellular green alga exhibiting axial polarity and a high degree of cell and organ specialization. In Chara thallus cells, three distinguishable trans-plasmamembrane fluxes contributed to the net uptake of [1-14C]-IAA from an external solution, viz.: a non-mediated, pH-sensitive influx of undissociated IAA (IAAH); a saturable influx of IAA; and a saturable efflux of IAA. Both saturable fluxes were competitively inhibited by unlabelled IAA. Association of [3H]IAA with microsomal preparations from Chara thallus tissue was competitively inhibited by unlabelled IAA. Results indicated that up-take carriers occurred in the membranes at a much higher density than efflux carriers. The efflux component of IAA net uptake by Chara was not affected by several phytotropins (N-1-naphthylphthalmic acid, NPA; 2-(1-pyrenoyl)benzoic acid; and 5-(2-carboxyphenyl)-3-phenylpyrazole), which are potent non-competitive inhibitors of specific auxin-efflux carriers in more advanced plant groups, and no evidence was found for a specific association of [3H]NPA with Chara microsomal preparations. It was concluded that Chara lacked phytotropin receptors. Net uptake of [1-14C]IAA also was unaffected by 2,3,5-triiodobenzoic acid except at concentrations ( 10–1 mol · m–3) high enough to depress cytoplasmic pH (determined by uptake of 5,5-dimethyloxazolidine-2,4-dione). Chlorella cells accumulated [1-14C]IAA from an external solution by pH-sensitive diffusion of IAA across the plasma membrane and anion (IAA) trapping, but no evidence was found in Chlorella for the occurrence of IAA carriers. These results indicate that carrier systems capable of mediating the transmembrane transport of auxins appeared at a very early stage in the evolution of green plants, possibly in association with the origin of a differentiated, multicellular plant body. Phytotropin receptors evolved independently of the carriers.Abbreviations CPP 5-(2-carboxyphenyl)-3-phenylpyrazole - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - TIBA 2,3,5-triiodobenzoic acid We thank the Nuffield Foundation for the award of an Undergraduate Research Bursary to J.E.D.-F., Dr. G.F. Katekar, C.S.I.R.O., Canberra, Australia for generous gifts of phytotropins, and Mrs. R.P. Bell for technical support.  相似文献   

13.
Oxindole-3-acetic acid (OxIAA) has been identified in germinating seeds of Scots pine (Pinus sylvestris) using gas chromatography-mass spectrometry. Seeds germinated for 5 d contained 2.7 ng OxIAA·g-1 (dry weight) whereas ungerminated seeds contained 0.2 ng·g-1. Isotopically labelled OxIAA was formed in seeds incubated with [1-14C]-, [2-14C]- or [2H5]indole-3-acetic acid.Abbreviations DDC sodium diethyldithiocarbamate - GC gas chromatography - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - MS mass spectrometry - OxIAA oxindole-3-acetic acid - PVP polyvinylpyrrolidone - TMS trimethylsilyl  相似文献   

14.
The seeds of Paris polyphylla var. yunnanensis are deeply dormant, and they remain dormant for 18 months or longer in their natural environment. Periodic exposure of the seeds to a low-temperature of 4 °C broke the dormancy in about 16 weeks (112 days). The most effective temperature stratification scheme was an interval of 14 days at 4 °C and 14 days at 22 °C. Both GA3 and ethephon significantly enhanced the germination rate during the stratification treatment. The seed coat, particularly the mesophyll outer layer of the seed coat, strongly inhibited the germination. With removal of the seed coat and exposure of the uncoated seeds to 600 mg/l GA3 for 48 h before the temperature stratification of 14 days at 4 °C and 14 days at 22 °C for 112 days, a germination percentage as high as 95.3% of the seeds was attained in about 160 days.  相似文献   

15.
Abscisic acid (ABA) levels in seeds from three cultivars of apple (Malus domestica Borkh.) which have substantially different chilling requirements were investigated by gas chromatography mass-spectrometry selected ion monitoring (GCMS-SIM) during stratification. The ABA content of dormant unchilled seeds was similar in the three cultivars, suggesting no relationship between the chilling requirement of those seeds and their ABA status. That chilling is not related to ABA changes during stratification was confirmed by warm (20°C) and cold (5°C) stratification experiments. ABA content dropped rapidly and nearly identically under both temperature regimes, but only cold stratification promoted germination. The decline in ABA during stratification was due in large part to leaching from the seed coat and nucellar membrane; the ABA content of the embryo remained nearly constant. The radicle in intact seeds stratified at 5°C began growing 20–30 days after the ABA in the seed coat and nucellar membrane had nearly disappeared. Radicle growth did not occur in unchilled seeds, even though ABA had leached from them as well. It is possible that the leaching of ABA from the seed allows certain promotive forces to develop, but if so, these can develop only at chilling temperatures. Studies were also conducted on 2-trans ABA relationships to apple seed dormancy, but no association was evident.Report No. 12, Department of Fruit and Vegetable Science, Cornell University.  相似文献   

16.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE diethylaminoethyl - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - ICA indole-3-carboxylic acid - IEt indole-3-ethanol - PVP polyvinylpyrrolidone  相似文献   

17.
Germinating seed ofDalbergia dolichopetala converted both [2H5]l-tryptophan and [2H5]indole-3-ethanol to [2H5]indole-3-acetic acid (IAA). Metabolism of [2-14C]IAA resulted in the production of indole-3-acetylaspartic acid (IAAsp), as well as several unidentified components, referred to as metabolites I, II, IV and V. Re-application of [14C]IAAsp to the germinating seed led to the accumulation of the polar, water-soluble compound, metabolite V, as the major metabolite, together with a small amount of IAA. Metabolites I, II and IV were not detected, nor were these compounds associated with the metabolism of [2-14C]IAA by shoots and excised cotyledons and roots from 26-d-oldD. dolichopetala seedlings. Both shoots and cotyledons converted IAA to IAAsp and metabolite V, while IAAsp was the only metabolite detected in extracts from excised roots. The available evidence indicates that inDalbergia, and other species, IAAsp may not act as a storage product that can be hydrolysed to provide the plant with a ready supply of IAA.Abbreviations HPLC-RC high-performance liquid chromatography-radiocounting - IAA indole-3-acetic acid - IAAsp indole-3-acetylaspartic acid - IAlnos 2-O-indole-3-acetyl-myo-inositol - IEt indole-3-ethanol  相似文献   

18.
The role of the oxidative pentose phosphate (PP) pathway in the dormancy-breaking of cocklebur (Xanthium pennsylvanicum Wallr.) seeds was investigated. D-[1-14C]-glucose or D-[6-14C]-glucose was fed to dormant and non-dormant lower seeds or to their axial or cotyledonary segments which were imbibed for different durations, and C6/C1 ratios of respired 14CO2 as an index of the PP pathway activity were calculated. Contrary to expectation, there was no significant difference in the C6/C1 ratios between the dormant and non-dormant seeds or segments during a water imbition period of 24 h, although the PP pathway actually operated already in an early stage of water imbibition. Also concerning the activities of G6PDH and 6PGDH, the key enzymes of this pathway, no difference between the dormant and non-dormant seeds was found. It was thus concluded that, unlike other seeds, there is no contribution of the PP pathway to the regulation of dormancy of the cocklebur seed.  相似文献   

19.
All the concentrations (25-150 mgl-1) of the phytohormones kinetin, IAA (indol-3-ylacetic acid) and GA3 (gibberellic acid) increased the activity of DCPIP (2,6 dichlorophenolindophenol)-Hill reaction, chlorophyll and protein contents over the control data in leaves ofSechium edule Sw. on Darjeeling hill of the Eastern Himalayas; while ethrel (2-chloroethylphosphonic acid) treatments decreased these parameters in the hilly species. The most effective concentrations in increasing these parameters were 50 mg 1-1 of kinetin, 50 mg 1-1 of IAA and 100 mg 1-1 of GA3; whereas 50 mg 1-1 of ethrel was most effective in decreasing these parameters during the induction of senescence in the hilly vegetable crop. The increase in these parameters was greatest with kinetin, followed by IAA and least with GA3 in the hilly plant species studied.  相似文献   

20.
Application of 10 to 100 μg indol-3-ylacetic acid to the leaves of rooted cuttings of aspen caused inhibition of root growth after three hours. Root growth recovered within 24 hours after IAA treatment. Swelling of the root tips occurred during the period of inhibition. The roots responded in the same way if IAA was applied in solution to the cut stem surface above the mature leaves. IAA-1-14C applied through a cut stem surface or to mature leaves was translocated downwards in the plants and labelled IAA could be isolated from the roots 3 to 24 hours after application. The ethanol-soluble activity decreased rapidly indicating a rapid metabolism or binding of IAA. IAA-1-14C applied to growing leaves was not translocated. From the rapid response of root growth it was concluded that IAA was translocated into the roots at a rate of about 7 cm per hour. This rate of translocation indicates that the sieve tubes are involved in the translocation. Implications of the results for the translocation of endogenous auxin into the roots are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号