首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Certain concentrations of the cold-shock protein (CSP310) were shown to induce systems of lipid peroxidation (POL) in winter wheat (Triticum aestivum L.) mitochondria in vitro. The process of nonenzymatic POL turned out to be the most sensitive to the presence of CSP310 in the incubation medium. The maximum induction of the enzymatic POL occurred at a higher CSP310 concentration. Wheat, maize (Zea mays L.), and elymus (Elymus sibiricus L.) proteins, which are immunochemically related to CSP310, did not manifest prooxidant properties, and, moreover, the elymus proteins had a clear-cut antioxidant effect. At the same time, these proteins uncoupled oxidation and phosphorylation to a far lesser extent than the winter rye (Secale cereale L.) CSP310. During low-temperature stress, the activation of uncoupling systems of wheat mitochondria by pyruvate, linoleic acid, and CSP310 was accompanied by an increase in oxygen consumption by seedlings and a decrease in the POL level.  相似文献   

2.
The addition of plant stress uncoupling protein CSP 310 has been found to increase thermogenesis in isolated winter wheat mitochondriain vitro during cold stress. On the other hand, the addition of anti-CSP 310 antiserum has been found to decrease thermogenesis in isolated winter wheat mitochondria. This result corresponds well to data about the influence of mitochondria incubation with CSP 310 and anti-CSP 310 antiserum on their energetic activity. It is supposed that CSP 310 uncouples the oxidative phosphorylation in mitochondria that causes thermogenesis during cold stress.  相似文献   

3.
A difference between the uncoupling action of constituently synthesised and stress-induced forms of winter rye stress uncoupling protein CSP 310 on winter wheat mitochondria in vitro was found from the initiation of incubation. The uncoupling activity of CSP 310 depended on its concentration in the incubation media. The addition of anti-CSP 310 antiserum to isolated mitochondria from stressed winter rye shoots caused coupling of oxidation and phosphorylation. Western-blot analysis did not locate dehydrins K-segment in CSP 310 subunits.  相似文献   

4.
Recently, it has been reported that the cold-stress protein CSP 310, discovered in the cytoplasm of cold-resistant winter cereals, causes uncoupling of oxidative phosphorylation during cold stress. To understand how the uncoupling mechanism of CSP differs from that of cyanide-insensitive alternative oxidase and plant mitochondrial uncoupling protein, we determined the effect of respiratory-chain inhibition on winter wheat (Triticum aestivum L. cv. Zalarinka) mitochondria. Our data show a possible involvement of stress protein CSP 310 in mitochondrial electron transport in winter wheat. CSP 310 shunts electrons around the main cytochrome pathway of the mitochondrial respiratory chain, i.e. electron flow bypasses ubiquinone and complex III via CSP 310 to complex IV.  相似文献   

5.
Addition of the cold-stress-related protein CSP 310 to mitochondria isolated from winter wheat ( Triticum aestivum L. cv. Zalarinka), winter rye ( Secale cereale L. cv. Dymka), maize ( Zea mays L. cv. VIR 36) and pea ( Pisum sativum L. cv. Marat) caused an increase in non-phosphorylative respiration. This increase was inhibited by KCN, indicating that the protein is not a CN-resistant alternative oxidase. Unlike plant mitochondrial uncoupling proteins such as PUMP, the uncoupling action of CSP 310 did not depend on the presence of free fatty acids in the incubation medium. We propose that the mechanism of the uncoupling action of CSP 310 differs from that of other known plant uncoupling systems and that the CSP 310 uncoupling system is a third uncoupling system in cereals.  相似文献   

6.
The effects of different Ca2+ concentrations on winter wheat (Triticum aestivum L.) functioning and cytochrome c release after organelle incubation with cold-shock protein with a mol. wt of 310 kD or after cold shock were studied. Low (1–5 μM) and high (25–50 μM) Ca2+ concentrations inhibited mitochondrial respiration in control seedlings, whereas 10 μM Ca2+ enhanced respiration in state 4 and reduced indices characterizing coupling (respiratory control (RC) and ADP: O ratio). At concentrations of 6–20 and 50 μM, Ca2+ ions suppressed CSP310 uncoupling effect, which reduced the rate of respiration and an increase in the RC and ADP: O ratio. Low-temperature stress and exogenous CSP310 induced cytochrome c leakage from winter wheat mitochondria both in the absence of Ca2+ and in the presence of its low concentrations.  相似文献   

7.
We studied the effects of cold-shock 310-kD protein (CSP310) isolated from winter rye seedlings on the energetic activity of plant mitochondria. CSP310 was shown to enhance nonphosphorylating respiration and uncoupled oxidative phosphorylation in isolated mitochondria. The uncoupling effect was enhanced with increasing protein concentration. An antibody against CSP310 interfered with the uncoupling effect of CSP310. Free fatty acids were not evidently involved in uncoupling. The physiological role of uncoupling between oxidation and phosphorylation during plant adaptation to low temperatures is discussed.  相似文献   

8.
Using three-day-old winter-wheat (Triticum aestivum L.) and six-day-old pea (Pisum sativum L.) seedlings as examples, we studied the effects of inhibitors of the electron transfer chain of plant mitochondria on the uncoupling between oxidation and phosphorylation brought about by the CSP310 stress protein. This uncoupling was inhibited by cyanide and by antibodies against CSP310, but not inhibited by antimycin A. It was shown that, in plant mitochondria, the CSP310 stress protein is involved in the electron transfer via shunting the major cytochrome pathway. In this case, the electron transfer bypasses complex II, ubiquinone, and complex III of the mitochondrial respiratory chain and is realized in the following succession: complex I-CSP310-cytochrome c-complex IV. This electron-transfer pathway was found in winter grass mitochondria during the low-temperature stress and resulted in thermogenesis. It was concluded that CSP310 is a thermogenic system, which is activated in winter grass mitochondria during the low-temperature stress.  相似文献   

9.
The addition of cold shock CSP310 protein to mitochondria isolated from both monocotyledonous (rye, wheat, and maize) and dicotyledonous (pea) plants uncoupled oxidation from phosphorylation. This uncoupling was caused neither by the damage to mitochondrial membranes nor by the activation of alternative cyanide-resistant oxidase. As distinct from the classical plant uncoupling mitochondrial protein (PUMP), CSP310 uncoupling effect was insensitive to BSA. Therefore, we believe that the mechanism of CSP310 action differs from that of known plant uncoupling proteins.  相似文献   

10.
The search for proteins, immunochemically related to winter rye CSP 310 among the native cytoplasmatic proteins of a number of cultivated cereals with different tolerance to low temperatures—maize, winter wheat and winter rye and the very low temperature tolerant wild grass—Elymus sibiricus was carried out. Western blotting showed that among the native cytoplasmatic proteins of all species investigated there are proteins immunochemically related to CSP 310 protein with molecular weights about 230 and about 140–110 kD. Proteins with molecular weights about 480 and 310 kD were found in significant amounts only in winter rye. In E. sibiricus proteins with molecular weights 380–320 kD were present but these were not present among the cytoplasmatic protein spectra of the other species. In each case the proteins immunochemically related to CSP 310 consisted of different combinations of two types of subunits.  相似文献   

11.
A difference was found between the temperature of control and heat-treated winter wheat and pea seedlings shoots during low temperature stress. Functioning of three thermogenic mitochondrial systems was established: (i) alternative cyanide-resistant oxidase, (ii) plant uncoupling mitochondrial protein and (iii) stress protein CSP 310 and these three caused the higher temperature of winter wheat control shoots. In peas only two thermogenic systems, the alternative cyanide-resistant oxidase and plant uncoupling mitochondrial proteins were found.  相似文献   

12.
It was shown that, in preparations of winter rye (Secale cereale L.) and winter wheat (Triticum aestivum L.), in proteins immunochemically related to a cold shock protein CSP310, and also in purified CSP310 from winter rye and triticale (Triticosecale X.), nucleic acid was present. Treatments with DNase and RNase showed that this nucleic acid was RNA. This protein-bound RNA was detected in the preparation of constitutively synthesized but not stress-induced protein. Stress-induced CSP310 bound high-molecular RNA in vitro at both 26 and 0°C, but it did not bind DNA. The data obtained permit an assumption that, during low-temperature stress, constitutively synthesized CSP310 with a low uncoupling capacity releases RNA and transits to a stress-induced form with a high uncoupling capacity.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 216–220.Original Russian Text Copyright © 2005 by Kolesnichenko, Tauson, Zykova, Klimenko, Grabelnykh, Pobezhimova.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

13.
We studied the localization of polypeptides immunochemically related to subunits of cold-shock 310-kD protein from winter rye (Secale cerealeL.) in mitochondria and submitochondrial structures of winter wheat (Triticum aestivumL.) seedlings. Polypeptides were separated by SDS-PAGE and probed with the antibody against 310-kD protein from rye seedlings. Wheat mitochondria contained the following polypeptides cross-reacting with this antibody: 66, 60, 55, and 23 kD in the inner membrane; 60 and 58 kD in the outer membrane; and 66 and 55 kD in the matrix.  相似文献   

14.
Lipid peroxidation in mitochondria from the functionally distinct inner (zona reticularis) and outer (zona fasciculata + zona glomerulosa) zones of the guinea-pig adrenal cortex was investigated. Ferrous ion (Fe2+)-induced lipid peroxidation was far greater in inner than outer zone mitochondria. Ascorbic acid similarly initiated lipid peroxidation to a greater extent in inner zone mitochondrial preparations. Differences in the unsaturated fatty acid content of inner and outer zone mitochondria could not account for the regional differences in lipid peroxidation. Total fatty acid concentrations were greater in the outer than in the inner zone, and the relative amounts of each fatty acid were similar in the two zones. However, mitochondrial concentrations of alpha-tocopherol, an antioxidant known to inhibit lipid peroxidation, were approx. 5-times greater in the outer than inner zone. The results demonstrate that there are regional differences in mitochondrial lipid peroxidation in the adrenal cortex which may be attributable to differences in alpha-tocopherol content. Thus, alpha-tocopherol may serve to protect outer zone mitochondrial enzymes from the consequences of lipid peroxidation and thereby contribute to some of the functional differences between the zones of the adrenal cortex.  相似文献   

15.
渍水对小麦扬麦5号旗叶和根系衰老的影响   总被引:15,自引:0,他引:15  
姜东  陶勤南  张国平 《应用生态学报》2002,13(11):1519-1521
1 引  言生育中后期渍水是长江中下游麦区小麦高产稳产的主要限制因子[13 ,16] .该区由于普遍实行稻麦多熟种植制度 ,前茬水稻使土壤浸水时间过长 ,土壤粘重 ,排水困难 ,透气性差而造成湿害 ;另外 ,该区常年麦季降雨量 5 0 0~ 80 0mm (浙江省可达 10 0 0mm)多集中于小麦生长的中后期 ,大大超过了小麦正常需水量 (35 0~ 4 5 0mm) ,从而加剧渍害[5] .  研究表明 ,渍水小麦株高、地上部干重、分蘖数、主茎绿叶片数、绿叶面积等都受到影响[1,12 ,16] ,叶片光合速率、气孔导度、细胞间隙CO2 浓度下降[8] ,RuBPCO活性降低[14…  相似文献   

16.

Background  

The development of chilling and freezing injury symptoms in plants is known to frequently coincide with peroxidation of free fatty acids. Mitochondria are one of the major sources of reactive oxygen species during cold stress. Recently it has been suggested that uncoupling of oxidation and phosphorylation in mitochondria during oxidative stress can decrease ROS formation by mitochondrial respiratory chain generation. At the same time, it is known that plant uncoupling mitochondrial protein (PUMP) and other UCP-like proteins are not the only uncoupling system in plant mitochondria. All plants have cyanide-resistant oxidase (AOX) whose activation causes an uncoupling of respiration and oxidative phosphorylation. Recently it has been found that in cereals, cold stress protein CSP 310 exists, and that this causes uncoupling of oxidation and phosphorylation in mitochondria.  相似文献   

17.
The testis is a remarkably active metabolic organ; hence it is suitable not only for studies of lipid metabolism in the organ itself but also for the study of lipid peroxidation processes in general. The content of fatty acids in testis is high with a prevalence of polyunsaturated fatty acids (PUFA) which renders this tissue very susceptible to lipid peroxidation. Studies were carried out to evaluate the effect of alpha-tocopherol in vitro on ascorbate-Fe(++) lipid peroxidation of rat testis microsomes and mitochondria. Chemiluminescence and fatty acid composition were used as an index of the oxidative destruction of lipids. Special attention was paid to the changes produced on the highly PUFA [C20:4 n6] and [C22:5 n6]. Lipid peroxidation of testis microsomes or mitochondria induced a significant decrease of both fatty acids. Total chemiluminescence was similar in both kinds of organelles when the peroxidized without (control) and with ascorbate-Fe(++) (peroxidized) groups were compared. Arachidonic acid was protected more efficiently than docosapentaenoic acid at all alpha-tocopherol concentrations tested when rat testis microsomes or mitochondria were incubated with ascorbate-Fe(++). The maximal percentage of inhibition in both organelles was approximately 70%; corresponding to an alpha-tocopherol concentration between 1 and 0.25 mM. IC50 values from the inhibition of alpha-tocopherol on the chemiluminescence were higher in microsomes (0.144 mM) than mitochondria (0.078 mM). The protective effect observed by alpha-tocopherol in rat testis mitochondria was higher compared with microsomes, associated with the higher amount of [C20:4 n6]+[C22:5 n6] in microsomes that in mitochondria. It is proposed that the vulnerability to lipid peroxidation of rat testis microsomes and mitochondria is different because of the different proportion of PUFA in these organelles The peroxidizability index (PI) was positively correlated with the level of long chain fatty acids. The results demonstrated the protective effect of alpha-tocopherol on lipid peroxidation in microsomes and mitochondria from rat testis.  相似文献   

18.
邻啡罗啉-Cu诱发小麦离体叶片的氧化损伤   总被引:1,自引:0,他引:1  
邻啡罗啉-Cu处理小麦叶片,加快O2^-的产生,提高SOD和POD活性,加速叶绿体色素和蛋白质降解,因而MDA积累增加。暗示邻啡罗啉-Cu有诱导植物组织产生活性氧、促进过氧化的作用。  相似文献   

19.
Pregnant female Wistar rats that received a control (100 ppm Zn) or a Zn-deficient diet (1.5 ppm Zn) from d 0 to 21, or nonpregnant normally fed female rats without or with five daily oral doses of 300 mg/kg salicylic acid were used for the experiments. In isolated mitochondria or microsomes from various maternal and fetal tissues, lipid peroxidation was determined as malondialdehyde formation measured by means of the thiobarbiturate method. Zn deficiency increased lipid peroxidation in mitochondria and microsomes from maternal and fetal liver, maternal kidney, maternal lung microsomes, and fetal lung mitochondria. Lipid peroxidation in fetal microsomes was very low. Zn deficiency produced a further reduction of lipid peroxidation in fetal liver microsomes. Salicylate increased lipid peroxidation in liver mitochondria and microsomes after addition in vitro and after application in vivo. The increase of lipid peroxidation by salicylate may be caused by two mechanisms: an increased cellular Fe uptake that, in turn, can increase lipid peroxidation and chelating Fe, in analogy to the effect of ADP in lipid peroxidation. The latter effect of salicylate is particularly expressed at increased Fe content.  相似文献   

20.
以小麦品种‘西农88’(Triticum aestivum L.,cv.Xinong 88)为材料,研究了外源施加不同浓度茉莉酸(1、2.5、5、10 mmol/L)对UV-B辐射(1.5 kJ·m-2·d-1)下小麦幼苗光合色素、抗氧化酶、丙二醛、游离脯氨酸、紫外吸收物、花青素、根系活力等生理指标以及对其生长的影响,探讨了茉莉酸在UV-B辐射胁迫中的可能作用及其作用机制.研究结果表明,外源茉莉酸对小麦幼苗生理指标产生显著影响,并且表现出浓度效应,其中较低浓度的茉莉酸(1 mmol/L和2.5 mmol/L)能明显提高小麦幼苗的UV-B抗性.表现为低浓度茉莉酸显著提高UV-B辐射下小麦幼苗叶片中的总叶绿素含量、过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性.并且外源施加的茉莉酸还能够增加小麦幼苗的游离脯氨酸含量,降低脂质过氧化水平,提高花青素含量,增强根系活力.可见,茉莉酸通过提高小麦幼苗的抗氧化酶活性,增加渗透调节物含量以及保护性色素含量,从而缓解膜脂过氧化程度和提高防御物质含量,进而增强植物抵抗UV-B辐射胁迫的能力,保证小麦幼苗正常生长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号