首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The level of CD8 expression can determine the outcome of thymic selection.   总被引:1,自引:0,他引:1  
E A Robey  F Ramsdell  D Kioussis  W Sha  D Loh  R Axel  B J Fowlkes 《Cell》1992,69(7):1089-1096
During thymic development, thymocytes that can recognize major histocompatability complex (MHC) molecules on thymic epithelial cells are selected to survive and mature (positive selection), whereas thymocytes that recognize MHC on hematopoietic cells are destroyed (negative selection). It is not known how MHC recognition can mediate both death and survival. One model to explain this paradox proposes that thymocytes whose T cell antigen receptors (TCRs) recognize MHC with high affinity are eliminated by negative selection, whereas low affinity TCR-MHC interactions are sufficient to mediate positive selection. Here we report that, while the expression of a 2C TCR transgene leads to positive selection of thymocytes in H-2b mice, expression of both a CD8 transgene and a 2C TCR transgene causes negative selection. This observation indicates that quantitative differences in TCR-MHC recognition are a critical determinant of T cell fate, a finding predicted by the affinity model for thymic selection.  相似文献   

2.
It has been reported that human T cells recognize the polymorphism of murine Ia antigens in the human anti-mouse xenogeneic mixed lymphocyte reactions (MLR). In this study, murine T cell recognition of human Class II antigens of the major histocompatibility complex (MHC) was analyzed in mouse anti-human xenogeneic MLR responses. The xenoreactive murine T cell proliferative response was blocked by adding anti-HLA-DR monoclonal antibody to the xenogeneic MLR culture. The specificity of xenoreactive murine T cells was examined with regard to the secondary and tertiary xenogeneic MLR system. The xenoreactive murine T cells were restimulated by distinct human stimulator cells that had no shared HLA antigens with the stimulator used in the primary MLR. The data presented here show that the murine xenoreactive T cells recognize the shared determinant(s) of HLA-DR antigen on non-T, non-B stimulator cells. The xenoreactive murine T cell proliferative responses were mediated by Thy-1+, Lyt-1+, and Lyt-2- cells. Furthermore, the xenoreactive T cell responses required Ia+ cells, and Ia antigen on accessory cells plays a crucial role in eliciting the xenoreactive responses against human stimulator cells, while Ia+ accessory cells in the responding cell population are not essential for the elicitation of allogeneic MLR responses, as reported previously.  相似文献   

3.
The gamma delta T cell receptor (TCR) derived from the mouse KN6 T cell hybridoma recognizes an autologous determinant encoded by a broadly expressed gene mapping in the TL region of the major histocompatibility complex (MHC). We have cloned the gene and demonstrated that it is a novel class I gene (designated 27b) belonging to a hitherto undescribed TL region gene cluster in strain C57BL/6. The BALB/c allele of 27b, gene T17c, is defective because it lacks an appropriate splice acceptor site, which explains the lack of recognition of BALB/c stimulator cells by the KN6 cells. We propose that gamma delta TCR and nonclassical MHC and MHC-related class I molecules have coevolved to recognize a conserved set of endogenous and foreign determinants.  相似文献   

4.
Autoreactive CD4+ T cells are required for full expression of disease in human systemic lupus erythematosus and in spontaneous murine lupus. However, the Ag specificity of these CD4+ T cells remains largely unknown. Rheumatoid factor (RF) B cells function as highly efficient APCs by taking up immune complexes (IC) and presenting IC constituents to T cells. We hypothesized that Ag-specific CD4+ T cells in lupus-prone mice could be identified by stimulating the CD4+ T cells with RF B cells from AM14 RF BCR transgenic mice pulsed with IC containing lupus-associated autoantibodies and autoantigens. This approach identified several independent T cell lines that proliferated robustly in response to IC-pulsed spleen cells from the AM14 RF BCR transgenic mice. However, these T cells did not recognize an IC constituent. Instead, these T cells recognized a determinant dependent on the inheritance of the transgene-encoded Vkappa8 L chain, most likely a neoantigen created by the insertion of the transgene into the genome. Additionally, although the precise nature of the neoantigen is not known, the T cells described in this report may provide a useful tool for examining the role of T cells in the RF autoantibody response.  相似文献   

5.
The role of H-2 in T cell recognition of Mls   总被引:2,自引:0,他引:2  
The role of H-2 was evaluated in T cell recognition of Mls-encoded antigens during primary mixed lymphocyte responses (MLR). Mlsc was used as a stimulating determinant in MLR and its recognition by T cells was assessed by linear regression analysis under culture conditions in which (A x B)F1 responder cell number was the factor limiting total response. Results of such experiments indicated the presence of distinct (A x B)F1 responder T cell subpopulations capable of differentially recognizing the foreign Mls antigen in association with one or the other parental H-2 haplotype. These findings demonstrate that T cells do not recognize Mlsc products in isolation, but rather are restricted to recognition of Mlsc in the context of "self" H-2 determinants.  相似文献   

6.
Anti-lymphocyte autoantibodies are a well-recognized component of the autoimmune repertoire in human systemic lupus erythematosus (SLE) and have been postulated to have pathogenic consequences. Early studies indicated that IgM anti-lymphocyte autoantibodies mainly recognized T cells and identified CD45, a protein tyrosine phosphatase of central significance in the modulation of lymphocyte function, as the main antigenic target on T cells. However, more recent work indicates that lupus autoantibodies can also recognize B cells and that CD45 may also represent their antigenic target. In particular, IgM Abs encoded by V(H)4.34 appear to have special tropism for B cells, and strong, but indirect evidence suggests that they may recognize a B cell-specific CD45 isoform. Because V(H)4.34 Abs are greatly expanded in SLE, in the present study we investigated the antigenic reactivity of lupus sera V(H)4.34 IgG Abs and addressed their contribution to the anti-lymphocyte autoantibody repertoire in this disease. Our biochemical studies conclusively demonstrate that lupus IgG V(H)4.34 Abs target a developmentally regulated B220-specific glycoform of CD45, and more specifically, an N-linked N-acetyllactosamine determinant preferentially expressed on naive B cells that is sterically masked by sialic acid on B220-positive memory B cells. Strikingly, our data also indicate that this reactivity in SLE sera is restricted to V(H)4.34 Abs and can be eliminated by depleting these Abs. Overall, our data indicate that V(H)4.34 Abs represent a major component of the lupus IgG autoantibody repertoire and suggest that the carbohydrate moiety they recognize may act as a selecting Ag in SLE.  相似文献   

7.
Six nonoverlapping peptides of the neuraminidase (NA) glycoprotein of influenza virus A/Puerto Rico/8/34 (H1N1) (PR8 virus) were found to be immunogenic for proliferating T cells when injected into BALB/c mice in Freund adjuvant. T cells elicited by peptide immunization could recognize PR8 virus in vitro. However, only one of these peptides, corresponding to residues 79 to 93 of NA (NA 79-93), was able to restimulate T cells of mice immunized with infectious virus. T cells that recognized this peptide were uniformly I-Ed restricted, yet infectious influenza virus was required for responses. NA 79-93-specific T-hybridoma clones raised by immunization either with whole virus or with the synthetic peptide alone each responded to replicative virus and not to UV-inactivated virions. These data suggest that the NA 79-93 T-cell determinant which is commonly presented during an encounter with influenza virus in vivo is processed preferentially from NA synthesized within antigen-presenting cells.  相似文献   

8.
Cell-based antitumor immunity is driven by CD8(+) cytotoxic T cells bearing TCR that recognize specific tumor-associated peptides bound to class I MHC molecules. Of several cellular proteins involved in T cell:target-cell interaction, the TCR determines specificity of binding; however, the relative amount of its contribution to cellular avidity remains unknown. To study the relationship between TCR affinity and cellular avidity, with the intent of identifying optimal TCR for gene therapy, we derived 24 MART-1:27-35 (MART-1) melanoma Ag-reactive tumor-infiltrating lymphocyte (TIL) clones from the tumors of five patients. These MART-1-reactive clones displayed a wide variety of cellular avidities. alpha and beta TCR genes were isolated from these clones, and TCR RNA was electroporated into the same non-MART-1-reactive allogeneic donor PBMC and TIL. TCR recipient cells gained the ability to recognize both MART-1 peptide and MART-1-expressing tumors in vitro, with avidities that closely corresponded to the original TCR clones (p = 0.018-0.0003). Clone DMF5, from a TIL infusion that mediated tumor regression clinically, showed the highest avidity against MART-1 expressing tumors in vitro, both endogenously in the TIL clone, and after RNA electroporation into donor T cells. Thus, we demonstrated that the TCR appeared to be the core determinant of MART-1 Ag-specific cellular avidity in these activated T cells and that nonreactive PBMC or TIL could be made tumor-reactive with a specific and predetermined avidity. We propose that inducing expression of this highly avid TCR in patient PBMC has the potential to induce tumor regression, as an "off-the-shelf" reagent for allogeneic melanoma patient gene therapy.  相似文献   

9.
Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression.  相似文献   

10.
It is reported here that most cytotoxic T lymphocytes (CTL), which recognize class I major histocompatibility complex (MHC) loci, express the T cell differentiation antigen T8. However, a minority of T8+ CTL clones was found to recognize class II MHC antigens. To test the hypothesis that T8 is involved only in T cell recognition of class I MHC antigens, we studied the role of T8 in the cytotoxic activity of class II MHC-specific CTL. Monoclonal antibodies specific for T8 blocked the activity of most class I MHC-specific CTL clones but did not affect the activity of class II MHC-specific CTL clones. Moreover, a mild trypsin treatment of the clones, which removed and T8 determinant, affected the activity of class I MHC but not that of class II MHC-specific CTL clones. These findings indicate that the class II-specific MHC CTL clones described here did not require T8 for their cytolytic activity. The activity of one T8+ class I MHC-specific (HLA-B27) CTL clone (HG-61) against the B cell line JY, which was used to raise this CTL clone, was not blocked by trypsin treatment of this clone. However, the activity of CTL clone HG-61 against target cells different from JY but carrying the appropriate HLA specificity was blocked by anti-T8 antibodies and trypsin treatment. The implications of these findings for the hypothesis that T8 is involved only in the activity of CTL with a relatively low avidity for class I MHC antigens are discussed.  相似文献   

11.
Autoimmunity often spreads in a predefined pattern during the progression of T cell-mediated autoimmune diseases. This progression has been well described in animal models and in man, but the basis for this phenomenon is little understood. To gain insight into the factors that determine this spreading hierarchy, we characterized the binding affinity of a panel of beta cell-autoantigenic peptides to I-Ag7, as well as the precursor frequency, functional avidity, and phenotype of the T cells that recognize these peptides in type 1 diabetes-prone nonobese diabetic mice. We observed that autoimmunity gradually spreads from a beta cell determinant, which had the largest precursor pool of high avidity T cells, to beta cell determinants with progressively smaller and lower avidity T cell precursor pools. This correlation between the sequential development of spontaneous T cell autoimmunity and the frequency and avidity of autoantigen-reactive T cells suggests that the extent to which T cells were negatively selected by the self-determinants is the key factor determining the spreading hierarchy.  相似文献   

12.
Due to critical amino acid changes in the 72-89 sequence, the determinant of human (Hu) basic protein (BP) that induces experimental autoimmune encephalomyelitis (EAE) in Lewis rats most likely differs from rat and guinea pig BP. To discern encephalitogenic sequence(s), the immunodominant epitopes recognized by Hu-BP-specific T cell lines were identified using synthetic peptides that corresponded to the Hu-BP sequence. The Hu-BP-reactive T cell line contained two distinct specificities, one directed at the 87-99 (Hu) sequence restricted by I-E, and the second directed at the 55-74 (Hu) sequence restricted by I-A. T cells specific for the 87-99 determinant recognized both Hu- and Rt-BP, were highly encephalitogenic, and accounted for the experimental autoimmune encephalomyelitis-inducing activity of the Hu-BP line. T cells directed at the S55-74 (Hu) sequence did not recognize Rt-BP and were not encephalitogenic. The same TCR V genes (homologous to the mouse V alpha 2 and V beta 8 families) that we showed previously were utilized preferentially in response to the I-A restricted 72-89 encephalitogenic sequence were also present in T cell lines specific for both the S55-74 and S87-99 epitopes. These data indicate that encephalitogenic activity of BP in Lewis rats is related to discrete T cell epitopes that are present on or cross-react with rat-BP. Furthermore it would appear that genes in the TCR V alpha 2 and V beta 8 families are widely used in response to different BP epitopes restricted by either I-A or I-E molecules.  相似文献   

13.
We have previously shown that sc immunization of C57BL/10 (H-2b) mice with the tobacco mosaic virus protein (TMVP) or with its tryptic peptide number 8, representing residues 93-112 of TMVP, induces T cells which proliferate in vitro in response to TMVP and to peptide 8. In contrast, immunization of B10.BR (H-2k) mice either with TMVP or with peptide 8 induces T cells which respond in vitro to the homologous but not the heterologous Ag. In the present article , we report that in the B10.BR (H-2k) strain, ip prepriming with (TMVP) 7 days prior to sc immunization with peptide 8 causes a drastic reduction in the in vitro proliferative response of peptide 8-specific T cells while no such effect is seen in the congenic C57BL/10 (H-2b) strain. This suppression of T cell responsiveness can be transferred with TMVP-primed spleen cells. Moreover, deleting T cells from the transferred spleen cells abrogates the suppressive effect. In both H-2 haplotypes, ip prepriming with peptide 8 causes suppression of the proliferative T cell response induced by subsequent immunization with peptide 8. This prepriming has no effect on the response to TMVP immunization of B10.BR mice but does effect the response of C57BL/10 mice. Using various synthetic peptides to analyze the specificity of the suppression, we have determined that (1) T cells involved in the suppression of the proliferative T cell response to a single peptide determinant do not suppress the proliferative T cell response to other determinants on the protein antigen and (2) these T cells with suppressor function, and proliferating T cells which are ultimately regulated, can exhibit specificity for the same epitope. These studies suggest that there may exist fundamental differences as to how T cells which participate in suppression an proliferating T cells (which include mainly T helper cells) recognize protein antigens.  相似文献   

14.
A T cell hybridoma (53(113)) obtained by fusion of BALB/c spleen cells and the BW 5147 lymphoma T cell line is described. This hybridoma recognizes mouse RBC (MRBC) and rat RBC, but not human, rabbit, guinea pig, or SRBC. The culture supernatant possesses hemagglutinating activity for the same indicator RBC. In addition to this, 53(113) cells are able to form protein A plaques in the presence of guinea pig complement and normal mouse serum (NMS) or purified mouse immunoglobulins (Ig). Because mouse Ig as well as sonicates from MRBC are able to inhibit the rosettes between the hybridoma cells and the MRBC, and because the sonicates inhibit protein A plaque formation, it seems likely that the same product can recognize a similar determinant expressed on MRBC and mouse Ig. The hypothesis that a 53(113) structure recognizes identical or cross-reactive carbohydrate determinants shared by murine Ig and C is considered.  相似文献   

15.
A431 cells have been used as an immunogen for generating monoclonal antibodies against the epidermal growth factor (EGF) receptor. Two immunoglobulin M and eight immunoglobulin G3 anti-EGF receptor antibodies were cloned. All ten antibodies immunoprecipitated biosynthetically labeled mature A431 cell EGF receptor and were able to recognize the receptor in Western blotting. However, none of the antibodies immunoprecipitated precursor polypeptides of the A431 cell EGF receptor, neither did they recognize EGF receptors from human foreskin fibroblasts, human placenta, nor a human-mouse hybrid cell expressing EGF receptor. The antibodies were found to bind to glycolipids from A431 cells and it was shown that the determinant involved was the blood group A antigen. It appears that this determinant is present on both the EGF receptor and glycolipids of A431 cells but is not expressed on EGF receptors from other human cells tested. One of the monoclonal antibodies raised was used for immunoaffinity purification of the EGF receptor. The procedure took advantage of the carbohydrate nature of the antigenic determinant by employing sugar-specific elution. The mild conditions permitted the purification of A431 cell EGF receptor (70-80% pure) that possessed an intrinsic EGF-stimulated tyrosine kinase activity with a specific activity of about 20 nmol/min/mg.  相似文献   

16.
Multiple antigenic sites on the simian virus 40 (SV40) tumor-specific transplantation antigen (TSTA) were detected by the use of cytotoxic T lymphocyte (CTL) clones isolated from continuous cultures of SV40-specific CTL (H-2b). Two independently derived clones, K11 and K19, specific for the SV40 TSTA in association with H-2Db, each recognized a different antigenic determinant of the SV40 TSTA. This conclusion was based on the observation that a human papovavirus BK virus (BKV) transformed cell line, which possesses a T antigen serologically cross-reactive with that of SV40, was lysed by a heterogeneous population of SV40-immune lymphocytes and by clone K19 but not by K11. Therefore, these CTL clones must recognize two different antigenic determinants of the SV40 TSTA:K19 recognizes a cross-reactive determinant of the SV40 and BKV TSTA, whereas K11 is reactive against an SV40-specific determinant.  相似文献   

17.
The genetic control of the murine T cell proliferative response to insulin was examined. It was found for two responder strains of mice that each recognizes a different determinant on the insulin molecule. H-2b mice recognize a determinant in the A chain loop of insulin whereas H-2d mice recognize a determinant that resides in the B chain, possibly in the last eight amino acids. Using H-2 recombinant strains of mice, the location of Ir gene control of the response to both determinants was mapped to the K region and/or I-A subregion of H-2. The possibility of non-MHC regulation of MHC-controlled immune responses is suggested by studies of recombinant inbred strains of mice.  相似文献   

18.
A series of MHC-restricted, bovine-insulin-(BI) reactive T cell clones were generated. The specificity of one group was shown to be for an insulin A-chain loop determinant; the other group apparently demonstrated specificity of a B-chain determinant and/or amino acid residue A4. Guinea pig anti-idiotypic antisera were prepared against two idiotypically related BI monoclonal antibodies of similar A-chain loop specificity. These reagents were able to modulate the antigen-specific proliferation of an insulin-reactive, A-chain loop-specific T cell clone. Because the monoclonal antibodies and the T cell clone recognize a similar molecular domain of the insulin molecule, these data suggest that the anti-idiotypic sera mimic an insulin-like determinant, perhaps by bearing an "internal image" of the antigen and thereby interfering with T cell antigen recognition. Further, these results suggest that such reagents may be useful in characterization of T cell antigen receptor specificity and lend further credence to the concept of idiotypic-anti-idiotypic regulation of the immune response.  相似文献   

19.
A cytotoxic monoclonal antibody, PL3, was produced by immunizing mice with a cell line homozygous for the HLA class II antigenic specificity DR7. The serologic specificity of PL3 was completely concordant with the MT3 supertypic specificity, which is tightly associated with HLA-DR4, -DR7, and -DRw9. This was confirmed by the finding that F(ab')2 fragments of PL3 blocked the cytotoxicity of anti-MT3 alloantisera. Although PL3 bound to each of the MT3-positive cell lines, it showed significantly weaker binding to HLA-DR4 and -DRw9 cells relative to -DR7 cells, both in titration and in quantitative absorption assays. This differential pattern of binding was not found for the polyclonal MT3 alloantisera, suggesting that the PL3 determinant may be one of several closely related determinants that comprise the MT3 allospecificity. To identify which of the subpopulations of class II molecules carry the PL3 determinant, several approaches have been used. F(ab')2 fragments of PL3 which block the anti-MT3 alloantisera were also tested with anti-MB2 and anti-DR7 sera. Binding of the PL3 F(ab')2 fragments to DR7 homozygous target cells had no effect on the anti-MB2 sera, but significantly enhanced the cytotoxic reactivity of some anti-DR7 sera. This finding suggested that the PL3 determinant is distinct from the DR7 determinant, but is carried on the same molecule. PL3 was also used in blocking studies with allocytotoxic T cell clones which only recognize DR7-positive cell lines. Binding of PL3 to the DR7-positive target cells was found to completely inhibit these T cell clones. Complete blocking was also found with a monoclonal antibody, PL8, which recognizes a monomorphic determinant found on the DR subpopulation of class II molecules. This finding suggested that the PL3 determinant is carried on the same molecule that carries these T cell-defined DR7 allodeterminants. In biochemical studies with DR7-positive cell lines, PL3 and PL8 were found to immunoprecipitate the same subpopulation of class II molecules recognized by other DR-specific antibodies, SG157 and TAL-1B5. Two-dimensional gel analysis demonstrated that the pattern of alpha- and beta-chains immunoprecipitated by PL3, PL8, and TAL-1B5 were identical. In sequential immunoprecipitation studies, both PL3 and TAL-1B5 were capable of removing the same DR subpopulation of molecules recognized by PL3, PL8, TAL-1B5, or SG157 while leaving the additional class II molecules (DS) recognized by SG171 on DR7 cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The agonistic anti-human CD3ε antibody (Ab), OKT3, has been used to control acute transplant rejection. The in vivo administration of OKT3 was previously shown to induce the partial depletion of T cells and unresponsiveness (anergy) in the remaining CD4+ T cells. However, this therapy is also associated with the systemic release of several cytokines, which leads to a series of adverse side effects. We established a novel anti-human CD3ε Ab, 20-2b2, which recognized a close, but different determinant on the CD3ε molecule from that recognized by OKT3. 20-2b2 was non-mitogenic for human CD4+ T cells, could inhibit the activation of T cells in vitro, and induced T cell anergy in in vivo experiments using humanized mice. Cytokine release in humanized mice induced by the administration of 20-2b2 was significantly less than that induced by OKT3. Our results indicated that the CD3ε molecule is still an attractive, effective, and useful target for the modulation of T cell responses. The establishment of other Abs that recognize CD3ε, even though the determinant recognized by those Abs may be close to or different from that recognized by OKT3, may represent a novel approach for the development of safer Ab therapies using anti-CD3 Abs, in addition to the modification of OKT3 in terms of the induction of cytokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号