首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used micromanipulation to study the attachment of chromosomes to the spindle and the mechanical properties of the chromosomal spindle fibers. Individual chromosomes can be displaced about the periphery of the spindle, in the plane of the metaphase plate, without altering the structure of the spindle or the positions of the nonmanipulated chromosomes. From mid-prometaphase through the onset of anaphase, chromosomes resist displacement toward either spindle pole, or beyond the spindle periphery. In anaphase a chromosome can be displaced either toward its spindle pole or laterally, beyond the periphery of the spindle; however, the chromosome resists displacement away from the spindle pole. When an anaphase half-bivalent is displaced toward its spindle pole, it stops migrating until the nonmanipulated half-bivalents reach a similar distance from the pole. The manipulated half-bivalent then resumes its poleward migration at the normal anaphase rate. No evidence was found for mechanical attachments between separating half-bivalents in anaphase. Our observations demonstrate that chromosomes are individually anchored to the spindle by fibers which connect the kinetochores of the chromosomes to the spindle poles. These fibers are flexible, much less extensible than the chromosomes, and are to pivot about their attachment points. While the fibers are able to support a tensile force sufficient to stretch a chromosome, they buckle when subjected to a compressive force. Preliminary evidence suggests that the mechanical attachment fibers detected with micromanipulation correspond to the birefringent chromosomal spindle fibers observed with polarization microscopy.  相似文献   

2.
The relationship between chromosome movement and mirotubules was explored by combining micromanipulation of living grasshopper spermatocytes with electron microscopy. We detached chromosomes from the spindle and placed them far out in the cytoplasm. Soon, the chromosomes began to move back toward the spindle and the cells were fixed at a chosen moment. The microtubules seen in three-dimensional reconstructions were correlated with the chromosome movement just prior to fixation. Before movement began, detached chromosomes had no kinetochore microtubules or a single one at most. Renewed movement was always accompanied by the reappearance of kinetochore microtubules; a single kinetochore microtubule appeared to suffice. Chromosome movements and kinetochore microtubule arrangements were unusual after reattachment, but their relationship was not: poleward forces, parallel to the kinetochore microtubule axis (as in normal anaphase), would explain the movement, however odd. The initial arrangement of kinetochore microtubules would have led to aberrant chromosome distribution if it persisted, but instead, reorientation to the appropriate arrangement always followed. Observations on living cells permitted us to place in sequence the kinetochore microtubule arrangements seen in fixed cells, revealing the microtubule transformations during reorientation. From the sequence of events we conclude that chromosome movement can cause reorientation to begin and that in the changes which follow, an unstable attachment of kinetochore microtubules to the spindle plays a major role.  相似文献   

3.
Summary Mitosis in living cells ofOedogonium observed by time-lapse, was blocked by cytochalasin D (CD; 25–100 g/ml). Normal prometaphase to anaphase takes 10–15 min; blockage of entry into anaphase by CD was reversible up to 2–2.5 h in CD and washout was followed within 10–20 min by normal anaphase and cytokinesis. After 3–6 h in CD, unseparated chromatids segregated randomly into two groups as the spindle slowly elongated considerably, becoming distorted and twisted. During this pseudoanaphase, chromatids sometimes split irregularly and this was stimulated by late washout of CD. CD affected chromosomal attachment to the spindle. If applied at prophase and prometaphase, spindle fibres entered the nucleus; chromosomes moved vigorously and irregularly. A few achieved metaphase only briefly. Treatment at metaphase caused chromosomes to irregularly release and after random movement, all slowly gathered at either pole. Upon removal of CD, chromosomes rapidly achieved metaphase and anaphase A and B soon followed. If CD took effect during anaphase, chromatids detaching from the spindle oscillated rapidly along it; anaphase and cytokinesis (phycoplast formation) were delayed as the cell attempted to correct for abnormal chromosomal behaviour. Thus, CD prevents normal kinetochore attachment to the spindle and actin may be the target for this response.Abbreviations A-LP anaphase-like prometaphase - CD cytochalasin D - MT microtubule  相似文献   

4.
5.
6.
We investigated the nature of the asymmetric positioning and attachment of Chaetopterus oocyte meiotic spindles to the animal pole cortex by micromanipulation. The manipulated spindle's behavior was analyzed in clarified oocyte fragments using video-enhanced polarized light microscopy. As the spindle was drawn towards the cell interior with a microneedle, the cell surface dimpled inwards adjacent to the outer spindle pole. As the spindle was pulled further inwards, the dimple suddenly receded indicating a rupture of a mechanical link between the cell cortex and outer spindle pole. The spindle paused briefly when released from the microneedle; then it spontaneously migrated back to the original attachment site and reassociated with the cell cortex. Positive birefringent astral fibers were seen running between the outer spindle pole and the cortex during the migration. The velocity of the spindle during its migration tended to increase as it came closer to the cortex. Velocities as high as 1.25 micron/sec. were measured. If removed too far from the attachment site cortex (greater than 35 micron), the spindle remained stationary until pushed closer to the original attachment site. Spindles, inverted by micromanipulation, migrated and reattached to the cortical site by their former inner pole; thus either spindle pole can seek out and migrate to the original attachment site. However, spindle poles pushed against other cortical regions did not attach demonstrating that there is only one unique, localized attachment site for spindle attachment.  相似文献   

7.
Paliulis LV  Nicklas RB 《Chromosoma》2005,113(8):440-446
The distinctive behaviors of chromosomes in mitosis and meiosis depend upon differences in kinetochore position. Kinetochore position is well established except for a critical transition between meiosis I and meiosis II. We examined kinetochore position during the transition and compared it with the position of kinetochores in mitosis. Immunofluorescence staining using the 3F3/2 antibody showed that in mitosis in grasshopper cells, as in other organisms, kinetochores are positioned on opposite sides of the two sister chromatids. In meiosis I, sister kinetochores are positioned side by side. At nuclear envelope breakdown in meiosis II, sister kinetochores are still side by side, but are separated by the time all chromosomes have fully attached in metaphase II. Micromanipulation experiments reveal that this switch from side-by-side to separated sister kinetochores requires attachment to the spindle. Moreover, it is irreversible, as chromosomes detached from a metaphase II spindle retain separate kinetochores. How this critical separation of sister kinetochores occurs in meiosis is uncertain, but clearly it is not built into the chromosome before nuclear envelope breakdown, as it is in mitosis.  相似文献   

8.
Before forming a monopolar attachment to the closest spindle pole, chromosomes attaching in newt (Taricha granulosa) pneumocytes generally reside in an optically clear region of cytoplasm that is largely devoid of cytoskeletal components, organelles, and other chromosomes. We have previously demonstrated that chromosome attachment in these cells occurs when an astral microtubule contacts one of the kinetochores (Hayden, J., S. S. Bowser, and C. L. Rieder. 1990. J. Cell Biol. 111:1039-1045), and that once this association is established the chromosome can be transported poleward along the surface of the microtubule (Rieder, C. L., and S. P. Alexander. 1990. J. Cell Biol. 110:81-95). In the study reported here we used video enhanced differential interference contrast light microscopy and digital image processing to compare, at high spatial and temporal resolution (0.1 microns and 0.93 s, respectively), the microtubule-mediated poleward movement of attaching chromosomes and poleward moving particles on the spindle. The results of this analysis demonstrate obvious similarities between minus end-directed particle motion on the newt pneumocyte spindle and the motion of attaching chromosomes. This is consistent with the hypothesis that both are driven by a similar force-generating mechanism. We then used the Brownian displacements of particles in the vicinity of attaching chromosomes to calculate the apparent viscosity of cytoplasm through which the chromosomes were moving. From these data, and that from our kinetic analyses and previous work, we calculate the force-producing potential of nascent kinetochore fibers in newt pneumocytes to be approximately 0.1-7.4 x 10(-6) dyn/microtubule) This is essentially equivalent to that calculated by Nicklas (Nicklas, R.B. 1988. Annu. Rev. Biophys. Biophys. Chem. 17:431-449) for prometaphase (4 x 10(-6) dyn/microtubule) and anaphase (5 x 10(-6) dyn/microtubule) chromosomes in Melanoplus. Thus, within the limits of experimental error, there appears to be a remarkable consistency in force production per microtubule throughout the various stages of mitosis and between groups of diverse taxonomic affinities.  相似文献   

9.
Harald Fuge 《Chromosoma》1974,45(3):245-260
Analysis of serial sections oriented parallel to the interpolar spindle axis revealed the following results. Autosomes in anaphase of the 1. meiotic division of Pales ferruginea spermatocytes are attached to the spindle in two ways: 1. The short kinetochoric microtubules (kMTs) diverge and interdigitate with the axial mass of non-kinetochoric microtubules (nkMTs). 2. The chromosome surface shows projections which protrude between the mass of nkMTs. — At the level of anaphase plates the concentration of nkMTs is higher than in the interzone. — The lagging sex chromosomes at the equator become stretched by anaphase forces during autosomal movement. — The mean length of nkMTs in metaphase is 3.0±0.1 μm, in anaphase 2.6±0.1 μm, possibly indicating an overall MT shortening in anaphase. Spindle architecture and aspects of anaphase forces are discussed.  相似文献   

10.
Summary The spatial relationships in human male metaphase cells treated with and without colcemide were compared with each other. The following results were obtained: (1) In normal male metaphases the overall distributions of chromosomal distances regardless of chromosome identification numbers did not show normal distribution, neither in the colcemid-free sample nor in the colcemide-treated sample. (2) In both samples larger chromosomes showed a more peripheral position, and smaller chromosomes showed a more central position. This finding was statistically significant. (3) No differences between the two samples could be observed concerning the following parameters: overall distributions of the centromere-centromere distances, distributions of the distances between the homologous chromosomes (except the small acrocentric chromosomes), rank positions of the mean distances between homologous chromosomes, and rank positions of the mean distances of the different chromosomes from the center of the mitosis (except few chromosomes). (4) Visible, but not statistically accessible, differences appeared between the two samples in respect to rank positions of the mean distances of all possible acrocentric pairing groups, rank positions of the mean distances of the homologous acrocentric chromosomes from the center of the mitosis, and distances of the X chromosome from the center of the mitosis. (5) Statistically significant differences appeared between the two samples with respect to distance distributions of the small acrocentric chromosomes and positions of the chromosomes 1, 16, 18, Y, and 21, 22 in relation to the center of the mitosis.  相似文献   

11.
12.
Living crane fly spermatocytes were irradiated in various areas, and changes in chromosome movement and changes in spindle fiber birefringence were measured.The traction system was localized in the chromosomal spindle fibers; an undamaged traction fiber extending at least 1/2 the fiber length (from the chromosome) is necessary for normal movement. The results suggest, however, that the birefringent fiber is separate from the traction fiber, and therefore that the chromosomal spindle fiber is composed of at least 2 components. Otherwise, the following results characterize the traction fiber: birefringence is not necessary for movement, birefringence and movement are affected independently, the birefringent fiber moves poleward when the associated chromosome does not move, and the birefringent fiber moves poleward at a rate not related to that of the associated chromosome. These and other results are more easily explained under the assumptions: (1) during anaphase, the birefringent fiber is independent of the traction fiber, and (2) prior to anaphase, the birefringent fiber is not independent of the traction fiber.The traction system was further characterized as follows: the anaphase movements of sister dyads are interdependent; in a cell, different sister dyad pairs are independent during anaphase but are not independent prior to anaphase; the initial separation of dyads is autonomous; the spindle organization changes markedly between metaphase and anaphase; and, something in the interzonal region is necessary for the subsequent division.It was suggested that the interdependent movement of sister dyads is mediated via functioning kinetochores. It was further suggested that this interdependence is mediated via kinetochore-interzonal region interactions, and that the interzonal region is involved with regulating the amount of force on the chromosome.Portions of this paper were presented to Dartmouth College in partial fullfilment of the requirements for the degree of Doctor of Philosophy.  相似文献   

13.
This article summarizes our current views on the dynamic structure of the mitotic spindle and its relation to mitotic chromosome movements. The following statements are based on measurements of birefringence of spindle fibers in living cells, normally developing or experimentally modified by various physical and chemical agents, including high and low temperatures, antimitotic drugs, heavy water, and ultraviolet microbeam irradiation. Data were also obtained concomitantly with electron microscopy employing a new fixative and through measurements of isolated spindle protein. Spindle fibers in living cells are labile dynamic structures whose constituent filaments (microtubules) undergo cyclic breakdown and reformation. The dynamic state is maintained by an equilibrium between a pool of protein molecules and their linearly aggregated polymers, which constitute the microtubules or filaments. In living cells under physiological conditions, the association of the molecules into polymers is very weak (absolute value of ΔF25°C < 1 kcal), and the equilibrium is readily shifted to dissociation by low temperature or by high hydrostatic pressure. The equilibrium is shifted toward formation of polymer by increase in temperature (with a large increase in entropy: ΔS25°C 100 eu) or by the addition of heavy water. The spindle proteins tend to polymerize with orienting centers as their geometrical foci. The centrioles, kinetochores, and cell plate act as orienting centers successively during mitosis. Filaments are more concentrated adjacent to an orienting center and yield higher birefringence. Astral rays, continuous fibers, chromosomal fibers, and phragmoplast fibers are thus formed by successive reorganization of the same protein molecules. During late prophase and metaphase, polymerization takes place predominantly at the kinetochores; in metaphase and anaphase, depolymerization is prevalent near the spindle poles. When the concentration of spindle protein is high, fusiform bundles of polymer are precipitated out even in the absence of obvious orienting centers. The shift of equilibrium from free protein molecules to polymer increases the length and number of the spindle microtubules or filaments. Slow depolymerization of the polymers, which can be brought about by low concentrations of colchicine or by gradual cooling, allows the filaments to shorten and perform work. The dynamic equilibrium controlled by orienting centers and other factors provides a plasusible mechanism by which chromosomes and other organelles, as well as the cell surface, are deformed or moved by temporarily organized arrays of microtubules or filaments.  相似文献   

14.
Dynamic turnover of the spindle is a driving force for chromosome congression and segregation in mitosis. Through a functional genomic analysis, we identify DDA3 as a previously unknown regulator of spindle dynamics that is essential for mitotic progression. DDA3 depletion results in a high frequency of unaligned chromosomes, a substantial reduction in tension across sister kinetochores at metaphase, and a decrease in the velocity of chromosome segregation at anaphase. DDA3 associates with the mitotic spindle and controls microtubule (MT) dynamics. Mechanistically, DDA3 interacts with the MT depolymerase Kif2a in an MT-dependent manner and recruits Kif2a to the mitotic spindle and spindle poles. Depletion of DDA3 increases the steady-state levels of spindle MTs by reducing the turnover rate of the mitotic spindle and by increasing the rate of MT polymerization, which phenocopies the effects of partial knockdown of Kif2a. Thus, DDA3 represents a new class of MT-destabilizing protein that controls spindle dynamics and mitotic progression by regulating MT depolymerases.  相似文献   

15.
The spindle checkpoint inhibits anaphase until all chromosomes have established bipolar attachment. Two kinetochore states trigger this checkpoint. The absence of microtubules activates the attachment response, while the inability of attached microtubules to generate tension triggers the tension/orientation response. The single aurora kinase of budding yeast, Ipl1, is required for the tension/orientation, but not attachment, response. In contrast, we find that the single aurora kinase of fission yeast, Ark1, is required for the attachment response. Having established that the initiator codon assigned to ark1(+) was incorrect and that Ark1-associated kinase activity depended upon survivin function and phosphorylation, we found that the loss of Ark1 from kinetochores by either depletion or use of a survivin mutant overides the checkpoint response to microtubule depolymerization. Ark1/survivin function was not required for the association of Bub1 or Mad3 with the kinetochores. However, it was required for two aspects of Mad2 function that accompany checkpoint activation: full-scale association with kinetochores and formation of a complex with Mad3. Neither the phosphorylation of histone H3 that accompanies chromosome condensation nor condensin recruitment to mitotic chromatin were seen when Ark1 function was compromised. Cytokinesis was not affected by Ark1 depletion or expression of the "kinase dead" ark1.K118R mutant.  相似文献   

16.
T G Tsvetkova  M F Iankova 《Genetika》1979,15(10):1870-1879
C-stained polymorphic variants of chromosomes 1, 9, 13--16, 21, 22 and Y were studied in married couples with reproductive failure (200 individuals) and in control couples having normal children and no spontaneous abortions and stillbirths. Location of heterochromatic segments, their size and heteromorphism of homologues were estimated. The individuals with reproductive failure were carriers of variants of chromosomes 9 and acrocentrics with higher content of heterochromatic material as well as with heterochromatic chromosome 9 significantly more frequently as compared with control individuals.  相似文献   

17.
The spindle checkpoint ensures genome fidelity by temporarily halting chromosome segregation and the ensuing mitotic exit until the last kinetochore is productively attached to the mitotic spindle. At the interface between proper chromosome attachment and the metaphase-to-anaphase transition are the mammalian spindle checkpoint kinases. Compelling evidence indicates that the checkpoint kinases Bub1 and BubR1 have the added task of regulating kinetochore-microtubule attachments. However, the debate on the requirement of kinase activity is in full swing. This minireview summarizes recent advances in our understanding of the core spindle checkpoint kinases Bub1 and BubR1 and considers evidence that supports and opposes the role of kinase activity in regulating their functions during mitosis.  相似文献   

18.
Summary Myxamoebae ofEchinostelium minutum exhibit extranuclear (open spindle) mitosis with centrioles present at the poles. Spindle microtubules are formed in association with a juxtanuclear MTOC which surrounds the cell's complement of centrioles. During late prophase or prometaphase the nuclear envelope breaks down and subsequently a metaphase plate is formed. Two anaphasic movements occur sequentially: firstly, the distance of the chromosomes to the poles shortens; secondly the distance between the spindle poles increases. The arrangement of spindle microtubules during anaphase is consistent with the hypothesis that chromosomal separation is due to lateral interaction (zippering) of microtubules. During telophase, reconstitution of the nuclear envelope usually takes place in the interzonal region prior to reformation in the polar region. Cytokinesis, which begins in anaphase or early telophase involves the participation of vesicles, microfilaments and microtubules.Based on the doctoral dissertation of the first author presented to the Department of Botany, University of Washington, Seattle, WA 98195, U.S.A.  相似文献   

19.
Summary Chromosome elasticity and movement have been studied in living cells in two distinct situations: early anaphase stretch due to opposed external forces, and drag stretch — an elongation due to frictional resistance or drag on a chromosome being pulled toward one pole. Drag stretch provides a simultaneous display of both friction and elasticity and shows that chromosomes in living cells are elastic up to approximately six-fold increases in length.Neither early anaphase stretch nor drag stretch produce detectable alterations in the velocity of chromosome movement. A simple mechanical model is described which permits interpretation of this result for drag stretch: no matter how extensive, drag stretch should produce no change in the force required to maintain a given velocity of movement and hence should not alter movement velocity. Early anaphase stretch is a very different proposition, and additional assumptions leading to a quantitative model are necessary for its interpretation. Nevertheless it is reasonably certain that the amount of stretch actually seen in these circumstances would influence chromosome movement if the applied force were not increased over that necessary in the absence of stretch. It is concluded that the mitotic forces are continually adjusted to produce a standard velocity of movement even when an unusual hindrance to movement exists. The implications of this are considered, particularly in regard to the stretching and rupture of dikinetochoric (dicentric) bridges in anaphase.The quantitative version of the mechanical model for elasticity and movement can be applied to the drag stretch data, and permits calculation of the ratio between frictional and elastic coefficients. The chief assumptions are that the elasticity is Hookian, and the frictional resistance Newtonian in character. The model has not been critically tested, but it is consonant with existing data.This investigation was supported in part by research grant number RG-8480 from the Division of General Medical Sciences, United States Public Health Service.  相似文献   

20.
NuMA protein is the largest, abundant, primate-specific chromosomal protein. The protein was purified from HeLa cells and monospecific monoclonal antibodies were prepared that react exclusively with NuMA protein in immunoblot analysis. These antibodies were used to define the intracellular location and properties of NuMA protein. Using indirect immunofluorescence, NuMA protein was detected only in the nucleus of interphase cells and on the chromosomes in mitotic cells. One class of monoclonal antibody called the 2E4-type antibody, caused NuMA protein (or a complex of proteins including NuMA) to be released from its binding site on metaphase or anaphase chromosomes. The separation of NuMA protein from chromosomes was observed either with the immunofluorescence assay or in electrophoretic analyses of proteins released from isolated metaphase chromosomes after reaction with 2E4 antibody. The immunofluorescence studies also showed that after release of the NuMA protein from chromosomes of metaphase or anaphase cells, the protein bound specifically to the polar region of the mitotic spindle. It was shown that exogenously added NuMA antigen/antibody complex bound only to the mitotic spindle poles of permeabilized primate cells and not to the spindle poles of other mammalian cells, thus demonstrating the specificity of the spindle-pole interaction. The antibody mediated transfer of NuMA from chromosomes to poles was blocked when the chromosomes were treated with cross-linking fixatives. Results suggest that the NuMA protein has specific attachment sites on both metaphase chromosomes and mitotic spindle poles (the site where post-mitotic nuclear assembly occurs). A model is proposed suggesting that a protein having such dual binding sites could function during nuclear reassembly to link mitotic chromosomes into the reforming nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号