首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and efficient synthesis of a series of C2-symmetric 17beta-estradiol homo-dimers is described. The new molecules are linked at position 17alpha of the steroid nucleus with either an alkyl chain or a polyethylene glycol chain. They are made from estrone in only five chemical steps with an overall yield exceeding 30%. The biological activity of these compounds was evaluated in vitro on estrogen dependent and independent (ER+ and ER-) human breast tumor cell lines: MCF-7 and MDA-MB-231. Some of the dimers present selective cytotoxic activity against the ER+ cell line. However, they are not very cytotoxic when compared to the antiestrogen tamoxifen. Unfortunately, they show only weak affinity for the estrogen receptor alpha (ERalpha) and no affinity for the estrogen receptor beta (ERbeta). The new compounds were also tested on human intestinal (HT-29) cancer and on murine skin cancer (B16-F10) cell lines for further biological assessment. Interestingly, the dimers were found to be cytotoxic to the murine skin cancer cell line but were inactive towards the intestinal cancer cell line.  相似文献   

2.
Estrogen plays an important role in maintaining bone density. Postmenopausal women have low plasma estrogen, but have high levels of conjugated steroids, particularly estrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHEAS). Conversion of these precursors to active estrogens may help maintain bone density in postmenopausal women. The enzyme steroid sulfatase (STS) converts sulfated steroids into active forms in peripheral tissues. STS occurs in bone, but little is known about its role in bone function. In this study, we investigated STS activity and expression in the human MG-63 pre-osteoblastic cell line. We also tested whether sulfated steroids can stimulate growth of these cells. MG-63 cells and microsomes both possessed STS activity, which was blocked by the STS inhibitors EMATE and 667 Coumate. Further evidence for STS in these cells was provided by RT-PCR, using STS specific primers, which resulted in cDNA products of the predicted size. We then tested for growth of MG-63 cells in the presence of estradiol-17β, E1S and DHEAS. All three steroids stimulated MG-63 cell growth in a steroid-free basal medium. We also tested whether the cell growth induced by sulfated steroids could be blocked using a STS inhibitor (667 Coumate) or using an estrogen receptor blocker (ICI 182,780). Both compounds inhibited E1S-induced cell growth, indicating that E1S stimulates MG-63 cell growth through a mechanism involving both STS and the estrogen receptor. Finally, we demonstrated using RT-PCR that MG-63 cells contain mRNA for both estrogen receptor alpha and estrogen receptor beta. Our data reveal that STS is present in human pre-osteoblastic bone cells and that it can influence bone cell growth by converting inactive sulfated steroids to estrogenic forms that act via estrogen receptor alpha or beta.  相似文献   

3.
The binding between the estrogen receptor α (ER-α) and a variety of compounds in traditional Chinese formulae, Si-Wu-Tang (SWT) series decoctions, was studied using a stably-transfected human breast cancer cell line (MVLN). In 38 compounds tested from SWT series decoctions, the estrogen-like activity of 22 compounds was above 60% in 20 μg mL(-1). Furthermore, theoretical affinity of these compounds was certificated using the functional virtual screen of ER-α modulators by FlexX-Pharm. The accuracy of functional virtual screening of ER-α modulators could reach to 77.27%. The results showed that some compounds, such as organic acids and flavones in SWT series decoctions could be used as selective estrogen receptor modulators (SERMs) and could be selected for further development as potential agents for estrogen related diseases.  相似文献   

4.
5.
Xenoestrogens, phytoestrogens and synthetic estrogens, are able to bind to estrogen receptors, and to mimic estrogenic activities in a cell and tissue specific manner. For the characterization of environmental estrogens mainly mammary derived and yeast based models have been used. The aim of this study was therefore to assess selected natural and synthetic compounds in an endometrial derived model. We measured the relative estrogenic potency of phytoestrogens (genistein, daidzein, coumestrol, some naringenins), synthetic estrogens (bisphenol A, octylphenol, nonylphenol, o,p′-DDT), mycoestrogen (zearalanone) as well as extracts of Cimicifuga racemosa on alkaline phosphatase (AlkP) activity in the endometrial derived adenocarcinoma cell line Ishikawa. We used a modified multiwell plate in vitro bioassay based on the estrogen-specific and dose-dependent enhancement of AlkP activity in this cell line. Estradiol, which induced AlkP at levels as low as 10−8 M, was used as positive control. Most of the compounds studied showed a clear dose-dependent estrogenic effect. Compared to the vehicle control (ethanol) all phyto- and mycoestrogens, stimulated the AlkP activity 2–4-fold at a concentration of 10−6 M. The synthetic chemicals bisphenol A and nonylphenol showed an effect at 10−6 M, octylphenol at 10−5 M. Effects of o,p′-DTT could not be measured. ICI 182,780, a pure estrogen receptor antagonist, significantly inhibited these effects. The latter result demonstrated the estrogen receptor dependency of this process. In summary, most of the phytoestrogens and industrial chemicals tested, behaved as estrogen receptor agonists in terms of the stimulation of AlkP activity.  相似文献   

6.
Breast cancer is the second most common cancer worldwide after lung cancer with the vast majority of early stage breast cancers being hormone-dependent. One of the major therapeutic advances in the clinical treatment of breast cancer has been the introduction of selective estrogen receptor modulators (SERMs). We describe the design and synthesis of novel SERM type ligands based on the 2-arylindole scaffold to selectively target the estrogen receptor in hormone dependent breast cancers. Some of these novel compounds are designed as bisindole type structures, while others are conjugated to a cytotoxic agent based on combretastatin A4 (CA4) which is a potent inhibitor of tubulin polymerisation. The indole compounds synthesised within this project such as 31 and 86 demonstrate estrogen receptor (ER) binding and strong antiproliferative activity in the ER positive MCF-7 breast cancer cell line with IC50 values of 2.71 μM and 1.86 μM respectively. These active compounds induce apoptotic activity in MCF-7 cells with minimal effects on normal peripheral blood cells. Their strong anti-cancer effect is likely mediated by the presence of two ER binding ligands for 31 and an ER binding ligand combined with a cytotoxic agent for 86.  相似文献   

7.
A novel class of 2,3,4-triarylbenzopyrans has been synthesized and were evaluated for their selective estrogen receptor modulation activity and as a therapeutic agent for breast cancer. Among the compounds synthesized, compounds 11a and 12c exhibited 73.91% and 69.24% inhibition as estrogen antagonistic activity, respectively. Compound 12a showed the lowest IC50 at 6.97 μM against MCF-7 and 11f showed the lowest IC50 value of 5.6 μM against MDA-MB-231 cell line in spite of their low receptor binding affinity implicating these compounds probably act through ER independent mechanism.  相似文献   

8.
A series of novel benzothiepin-derived compounds are described as potent selective modulators of the human estrogen receptor (SERMs). The objective of the study is to evaluate the antiproliferative effects of the compounds on human MCF-7 breast tumor cells. These heterocyclic compounds contain the traditional triarylethylene arrangement exemplified by tamoxifen, conformationally restrained through the incorporation of the benzothiepin ring system. The compounds demonstrated potency at nanomolar concentrations in antiproliferative assays against an MCF-7 human breast cancer cell line with low cytotoxicity. The compounds exhibited low nanomolar binding affinity for the estrogen receptor (ER) with some specificity for ERβ, and also demonstrate potent antiestrogenic properties in the human uterine Ishikawa cell line. The effect of a number of functional group substitutions on the ER binding properties of the benzothiepin molecular scaffold is explored through a brief computational structure-activity relationship investigation with molecular simulation.  相似文献   

9.
A series of novel benzothiepin-derived compounds are described as potent selective modulators of the human estrogen receptor (SERMs). The objective of the study is to evaluate the antiproliferative effects of the compounds on human MCF-7 breast tumor cells. These heterocyclic compounds contain the traditional triarylethylene arrangement exemplified by tamoxifen, conformationally restrained through the incorporation of the benzothiepin ring system. The compounds demonstrated potency at nanomolar concentrations in antiproliferative assays against an MCF-7 human breast cancer cell line with low cytotoxicity. The compounds exhibited low nanomolar binding affinity for the estrogen receptor (ER) with some specificity for ERbeta, and also demonstrate potent antiestrogenic properties in the human uterine Ishikawa cell line. The effect of a number of functional group substitutions on the ER binding properties of the benzothiepin molecular scaffold is explored through a brief computational structure-activity relationship investigation with molecular simulation.  相似文献   

10.
7-Methoxy-4-(4-methoxybenzylidene)-2-substituted phenyl-benzopyrans I and 4-[bis-(4-methoxyphenyl)-methylene-2-substituted phenyl-benzopyrans II carrying different alkylamino residues, designed as estrogen receptor (ER) binding ligands, were successfully synthesized through the McMurry coupling reaction of substituted benzaldehyde/substituted benzophenones and 2-hydroxyphenyl-7-methoxy-chroman-4-one in presence of lithium aluminum hydride and titanium (IV) chloride (LAH-TiCl(4)). Self-coupling of carbonyl reactants led to the formation of several side products. The prototypes were evaluated for their relative binding affinity (RBA), as well as their estrogenic and antiestrogenic activities. High order of estrogenic activity (>50% gain) observed with compounds 3, 7a, 7b, 7c, 8, and 10a and also their partial estrogen antagonistic activity (> or =15%) at the uterine level points toward successful designing of the compounds. Compounds 4, 7a, 7b, 7c, and 10a also possessed significant anticancer activity against human adenocarcinoma cell line (MCF-7 cell line) that may be related to their estrogen-dependent action.  相似文献   

11.
We constructed a novel surface-engineered yeast displaying the ligand-binding domain of the rat estrogen receptor (ERLBD). ERLBD, display of which on the yeast cell surface was confirmed by immunofluorescence, possessed strong binding activity to fluorescent 17beta-estradiol - an analogue of the natural ligand of the estrogen receptor - that was comparable to the activity of the native receptor. Environmental homeostasis has recently been disturbed by endocrine disruptors, which cause confusion in the hormone secretion system. It is therefore very important to identify chemical compounds with hormone-like activity and remove them from the environment. The present results demonstrate that the new arming yeast displaying ERLBD on its cell surface will be capable of screening, entrapping, and removing estradiol-like compounds from the environment.  相似文献   

12.
13.
The catalyzed coupling reaction of activated alcohol and mercaptan was used for the short and efficient synthesis of 14 thioether compounds. Two types of side chains, the methyl butyl alkylamide related to the pure steroidal antiestrogen ICI 164384 and the dimethylamino ethyloxy phenyl related to the clinically used nonsteroidal antiestrogen tamoxifen, were introduced by a thioether link on two types of nuclei (triphenylethane or estradiol). The new thioether derivatives were tested to assess their relative binding affinity for the estrogen receptor and their estrogenic or antiestrogenic activity in the ZR-75-1 (ER+) cell line. The results indicate that of the three types of compounds studied, only the nonsteroidal derivatives with an alkylamide side chain possess antiestrogenic activity. In the steroidal series, displacement of the alkylamide side chain from the 7 to the 6 position produced compounds with chemical characteristics similar to ICI 164384 or EM-139 but without antiestrogenic activity. In the nonsteroidal series of compounds with an aryl side chain, compounds with estrogenic activity were obtained. One compound, a nonsteroidal derivative with a methyl butyl alkylamide side chain 20, possesses a relative binding affinity for the estrogen receptor identical to EM-139 (1.1 and 1.2%, respectively) and a relatively good antiestrogenic activity that is 10-fold lower than EM-139 (IC50 values of 250 and 25 nM, respectively). This nonsteroidal thioether with an alkylamide side chain is free of estrogenic activity.  相似文献   

14.
Some compounds derived from plants have been known to possess estrogenic properties and can thus alter the physiology of higher organisms. Genistein and daidzin are examples of these phytoestrogens, which have recently been the subject of extensive research. In this study, genistein and daidzin were found to enhance the acetylcholinesterase (AChE) activity of the rat neuronal cell line PC12 at concentrations as low as 0.08 μM by binding to the estrogen receptor (ER). Results have shown that this enhancement was effectively blocked by the known estrogen receptor antagonist tamoxifen, indicating the involvement of the ER in AChE induction. That genistein and daidzin are estrogenic were confirmed in a cell proliferation assay using the human breast cancer cell line MCF7. This proliferation was also blocked by tamoxifen, again indicating the involvement of the ER. On the other hand, incubating the PC12 cells in increasing concentrations of 17 β-estradiol (E2) did not lead to enhanced AChE activity, even in the presence of genistein or daidzin. This suggests that mere binding of an estrogenic compound to the ER does not necessarily lead to enhanced AChE activity. Moreover, the effect of the phytoestrogens on AChE activity cannot be expressed in the presence of E2 since they either could not compete with the natural ligand in binding to the ER or that E2 down-regulates its own receptor. This study clearly suggests that genistein and daidzin enhance AChE activityin PC12 cells by binding to the ER; however, the actual mechanism of enhancement is not known. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Diethylstilbestrol (DES) and certain chemically structural derivatives and analogs, indenestrol A (IA), indenestrol B (IB), indanestrol (IN), and pseudo-DES (PD), have been used as probes to examine various estrogenic responses previously considered interrelated and obligatory to the stimulation of uterine growth. All the analogs had poor uterotropic activity in vivo which ranged from 10-200 times less than that of estradiol or DES. The poor uterotropic activity was not due to poor binding affinity for the receptor. All compounds except IN interacted with the mouse uterine estrogen receptor with high affinity (approximately Ka 1.5-2.2 X 10(10) M-1). In addition, the compounds were able to translocate similar levels of receptor to the nucleus in vivo. Nuclear retention and occupancy of the estrogen receptor by the compounds was comparable to the patterns produced by DES or estradiol. The activity of uterine tissue responses was investigated during treatment with the compounds. Only IA stimulated uterine glucose-6-phosphate dehydrogenase to significant levels similar to DES or estradiol. Uterine progesterone receptor was induced to varying degrees by all compounds; the indenestrol isomers (IA and IB) were the most active. Uterine DNA synthesis was marginally stimulated by the derivatives and analogs except for IB which showed a response increase comparable to DES or estradiol. Because of the differential stimulation, these data suggest that in uterine tissue estrogen receptor stimulates certain biochemical responses independently and not in concert. The ability of a particular response to be increased may depend on the chemical nature of the ligand receptor complex and its interaction at genomic sites.  相似文献   

16.
The estrogen receptors ERalpha and ERbeta are recognized as important pharmaceutical targets for a variety of diseases including osteoporosis and breast cancer. A series of novel benzoxepin-derived compounds are described as potent selective modulators of the human estrogen receptor modulators (SERMs). We report the antiproliferative effects of these compounds on human MCF-7 breast tumor cells. These heterocyclic compounds contain the triarylethylene arrangement as exemplified by tamoxifen, conformationally restrained through the incorporation of the benzoxepin ring system. The compounds demonstrate potency at nanomolar concentrations in antiproliferative assays against an MCF-7 human breast cancer cell line with low cytotoxicity together with low nanomolar binding affinity for the estrogen receptor. The compounds also demonstrate potent antiestrogenic properties in the human uterine Ishikawa cell line. The effect of a number of functional group substitutions on the ER binding properties of the benzoxepin molecular scaffold is examined through a detailed docking and 2D-QSAR computational investigation. The best QSAR model developed for ERalphabeta selectivity yielded R(2) of 0.84 with an RMSE for the training set of 0.30. The predictive quality of the model was Q(2) of 0.72 and RMSE of 0.18 for the test set. One particular compound bearing a 4-fluoro substituent, exhibits 15-fold selectivity for ERbeta and both our docking and QSAR studies converge on the correlation between enhanced lipophilicity and enhanced ERbeta binding for this benzoxepin ring scaffold.  相似文献   

17.
The effects of estradiol, progesterone, and tamoxifen on the activity of estradiol 2- and 16 alpha-hydroxylases were studied in human breast cancer cell cultures using a radiometric assay. After 5 days' exposure to these compounds, incubations in the presence of either [2-3H]estradiol or [16 alpha-3H]estradiol as substrate were carried out. In MCF-7 cells, estradiol (10(-8) M), progesterone (10(-6) M) and tamoxifen (10(-6) M) significantly increased 16 alpha-hydroxylase activity (estradiol; 21% progesterone 10% to 32%; tamoxifen 21% to 31%; P less than 0.01). Synergistic effects were observed when the cells were successively exposed to tamoxifen and progesterone. Simultaneous treatment with tamoxifen plus estradiol or estradiol plus progesterone showed no change from estradiol alone. On the other hand, although estradiol had no direct effects on 2-hydroxylase activity, tamoxifen decreased this enzymatic activity significantly at 10(-6) M (23% to 37%). Progesterone acted synergistically to further decrease this reaction. Treatment with only progesterone caused an increase in 2-hydroxylation. In contrast, a subline of MCF-7 cells with low estrogen receptor levels showed only minimal enzyme-hormone responses. Likewise, treatment of the estrogen receptor-negative MDA-MB-231 human breast cancer cell line with these compounds showed no effects on either 2- or 16 alpha-hydroxylase activity. In the progesterone receptor-rich T47D cell line, estradiol decreased both activities while progesterone increased both.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
A series of coumarin‐tagged β‐lactam triazole hybrids ( 10a – 10o ) were synthesized and tested for their cytotoxic activity against MDA‐MB‐231 (triple negative breast cancer), MCF‐7 (estrogen receptor positive breast cancer (ER+)) and A549 (human lung carcinoma) cancer cell lines including one normal cell line, HEK‐293 (human embryonic kidney). Two compounds 10b and 10d exhibited substantial cytotoxic effect against MCF‐7 cancer cell lines with IC50 values of 53.55 and 58.62 μm , respectively. More importantly, compounds 10b and 10d were non‐cytotoxic against HEK‐293 cell lines. Structure–activity relationship (SAR) studies suggested that the nitro and chloro group at the C‐3 position of phenyl ring are favorable for anticancer activity, particularly against MCF‐7 cell lines. Furthermore, antimicrobial evaluation of these compounds revealed modest inhibition of examined pathogenic strains with compounds 10c and 10i being the most promising antimicrobial agents against Pseudomonas aeruginosa and Candida albicans, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号