首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yu Y  Cui Y  Wang X  Fan YZ  Liu J  Yan X  Wang R 《Peptides》2006,27(7):1846-1851
In the present study, we determined whether endomorphin1 (EM1) and endomorphin2 (EM2), selective endogenous mu-opioid receptor (MOR) agonists, inhibited the response to EFS in rat isolated bronchus in a concentration- and frequency-dependent manner. EM1 (1 microM) produced significant inhibition at relatively low frequencies (< 5 Hz) (74.02 +/- 5.53%, 56.16 +/- 10.24% and 37.64 +/- 5.92% inhibition at 1, 2 and 4 Hz, respectively, p < 0.05 versus control), but no significant inhibition at 8, 16, 32 and 64 Hz (17.15 +/- 9.4%, 14.51 +/- 4.23%, 9.11 +/- 2.38% and 5.93 +/- 3.5%, respectively, p > 0.05 versus control). Similar modulations were observed in response to EM2 (1 microM). It is therefore considered that the inhibition effects of EM1 and EM2 may take place at frequencies under physiological conditions. Furthermore, EM1 and EM2 (0.01-10 microM) induced inhibition of cholinergic constriction in a dose-dependent manner at 1, 2 and 4 Hz. The inhibitory effect on EFS was blocked by the opioid receptor antagonist naloxone (10 microM), indicating that opioid receptors were involved. Neither EM1 nor EM2 (1 microM) had an effect on the contractile response to exogenous acetylcholine, indicating a prejunctional effect. All the results indicate that EM1 and EM2 are potent inhibitors of EFS-induced cholinergic bronchoconstriction. These also imply that EM1 and EM2 may modulate cholinergic bronchoconstriction under physiological conditions and that these tetrapeptides could have therapeutic potential in the treatment of airway diseases.  相似文献   

2.
Electric field stimulation (EFS) causes excitatory non adrenergic-non cholinergic (eNANC) and cholinergic constrictions in the guinea pig isolated bronchus, the activation of eNANC and cholinergic nerves respectively. We investigated the effects of [Nphe1]nociceptin(1-13)NH2 ([Nphe1]NC(1-13)NH2), [Phe1(CH2-NH)Gly2]nociceptin(1- 13)NH2 ([F/G] NC(1-13)NH2), and nocistatin (NST) on nociceptin (NC) inhibited constrictions in isolated bronchus of guinea pig. The results show that NC (1 micromol/L) inhibited EFS-induced eNANC and cholinergic constrictions compared with the control, in which nociceptin was not applied. After pretreatment with [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2, or NST, the inhibitions of NC were antagonized by [Nphe1]NC(1-13)NH2 and [F/G]NC(1-13)NH2 but not NST. However, [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2, and NST did not affect the inhibitions induced by morphine. Furthermore, [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2 and NST did not cause any appreciable effects on EFS-induced eNANC and cholinergic constrictions in guinea pig bronchi. The results demonstrate that [Nphe1]NC(1-13)NH2 and [F/G]NC(1- 13)NH2 but not NST act as selective antagonists of the NC receptor and the effects of NC on EFS-induced constrictions of guinea pig isolated bronchus.  相似文献   

3.
Previous studies have demonstrated that experimental type 1 diabetes induced by streptozotocin causes alterations in the biochemical and functional properties of several receptor systems in the rat bladder. However, the exact mechanism involved in the pathophysiology of voiding dysfunction in type 2 diabetic patients is unknown. Because the GK rat is a widely accepted genetically determined rodent model for human type 2 diabetes, we investigated diabetes-induced changes in the bladder smooth muscle of the GK rats at several time points. Male GK rats and age-matched Wistar rats, as controls, were maintained for 4, 8, 16, and 32 weeks. Contractile responses to KCl, carbachol, ATP, and electrical field stimulation (EFS) were measured by using the isolated muscle bath techniques. Acetylcholine (ACh) release induced by EFS from bladder muscle strips was measured by using high-performance liquid chromatography coupled with a microdialysis procedure. Maximum contractile responses to carbachol and ATP, the release of ACh, and tissue sorbitol levels were similar in bladders from GK and control rats until 8 weeks of age. At 16 weeks of age, however, the contractile responses to carbachol and ATP, and tissue sorbitol levels were increased, and the EFS-induced ACh release was decreased in GK rats compared with controls. Although the maximum contractile responses to EFS were unchanged until 16 weeks of age, they were decreased in 32-week-old GK rats, compared with controls. Our data indicate the presence of age-related alterations in the biochemical and functional properties of the bladder in type 2 diabetic GK rats.  相似文献   

4.
Previous studies have demonstrated that experimental type 1 diabetes induced by streptozotocin causes alterations in the biochemical and functional properties of several receptor systems in the rat bladder. However, the exact mechanism involved in the pathophysiology of voiding dysfunction in type 2 diabetic patients is unknown. Because the GK rat is a widely accepted genetically determined rodent model for human type 2 diabetes, we investigated diabetes-induced changes in the bladder smooth muscle of the GK rats at several time points. Male GK rats and age-matched Wistar rats, as controls, were maintained for 4, 8, 16, and 32 weeks. Contractile responses to KCl, carbachol, ATP, and electrical field stimulation (EFS) were measured by using the isolated muscle bath techniques. Acetylcholine (ACh) release induced by EFS from bladder muscle strips was measured by using high-performance liquid chromatography coupled with a microdialysis procedure. Maximum contractile responses to carbachol and ATP, the release of ACh, and tissue sorbitol levels were similar in bladders from GK and control rats until 8 weeks of age. At 16 weeks of age, however, the contractile responses to carbachol and ATP, and tissue sorbitol levels were increased, and the EFS-induced ACh release was decreased in GK rats compared with controls. Although the maximum contractile responses to EFS were unchanged until 16 weeks of age, they were decreased in 32-week-old GK rats, compared with controls. Our data indicate the presence of age-related alterations in the biochemical and functional properties of the bladder in type 2 diabetic GK rats.  相似文献   

5.
The purpose of the study was to determine whether catecholamines modulate cholinergic neurotransmission in isolated human airway smooth muscle. Bronchial rings were suspended in organ baths for isometric measurement of tension, and contractions were induced by either electrical field stimulation (EFS) or exogenous acetylcholine (ACh). Isoproterenol, epinephrine, and norepinephrine in that order of potency produced concentration-dependent inhibition of comparable responses to EFS and ACh. However a potency difference of 100-fold for isoproterenol (IC50 = 4.80 X 10(-8) M for EFS and 3.70 X 10(-6) M for ACh) and 10-fold for both epinephrine and norepinephrine was observed for inhibition of responses to EFS compared with responses to ACh. The inhibitory effects of isoproterenol on responses to EFS were prevented by propranolol and ICI 118551 (a beta 2-antagonist) but not by betaxolol (a beta 1-antagonist). Tyramine had no effect on contractions elicited by EFS. These experiments demonstrate that beta-agonists inhibit cholinergic nerve-induced contractions of human bronchi more potently than contractions induced by exogenous ACh, suggesting modulation of cholinergic neurotransmission by prejunctional beta 2-receptors.  相似文献   

6.
ACh is a neurotransmitter in cat esophageal circular muscle, as atropine nearly abolishes contraction of in vitro circular muscle strips in response to electric field stimulation (EFS) (5, 12). Experimental esophagitis reduced EFS- but not ACh-induced contraction of esophageal circular muscle, suggesting that esophagitis impairs neurotransmitter release. Because IL-1beta and IL-6 are produced in esophagitis and reproduce these changes in normal esophageal muscle (12), we examined the role of IL-1beta and IL-6 in this motor dysfunction. IL-1beta, IL-6 (12), H2O2, PGE2, and platelet-activating factor (PAF) were elevated in esophagitis specimens. Normal muscle incubated (2 h) in IL-1beta and IL-6 had increases in H2O2, PGE2, and PAF levels. H2O2 contributed to increased PGE2 and PAF, as the increase was partially (60-80%) reversed by the H2O2 scavenger catalase. EFS-induced [3H]ACh release from muscle strips significantly (42%) decreased in esophagitis and after 2 h incubation in PGE2 and in PAF C-16. Similarly, EFS-induced but not ACh-induced muscle contraction decreased in esophagitis and after incubation in PGE2 and PAF C-16. Finally, in normal muscle strips treated with IL-1beta electrical field stimulation (EFS)-induced contraction was partially restored by indomethacin or by the PAF antagonist CV3988 and was completely restored by the combination of CV3988 and indomethacin, whereas in strips treated with IL-6, EFS-induced contraction was partially restored by the PAF antagonist CV3988 and not affected by indomethacin. We conclude that IL-1beta-induced production of H2O2 causes formation of PGE2 and PAF that inhibit ACh release from esophageal cholinergic neurons without affecting ACh-induced contraction of esophageal circular muscle. IL-6 causes production of H2O2, PAF, and other unidentified inflammatory mediators.  相似文献   

7.
It is now well established that opioids modulate cholinergic excitatory neurotransmission in the gastrointestinal tract. The aim of the present study was to characterize a possible effect of endomorphins on nonadrenergic, noncholinergic (NANC) relaxant neurotransmission in the rat gastric fundus in vitro. The drugs used in the experiments were the endogenous mu-opioid receptors (MORs) endomorphin 1 and 2 and the mu-opioid receptor antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2). CTAP left the basal tonus and the spontaneous activity of the preparation unchanged. Electrical field stimulation (EFS) under NANC conditions at frequencies ranging from 0.5 to 16 Hz caused a frequency-dependent relaxant response on the 5-hydoxytryptamine (5-HT) (10(-7) M) precontracted smooth-muscle strip. Both endomorphin 1 and endomorphin 2 significantly reduced this relaxation in a concentration-dependent manner. Endomorphin 1 proved to be more potent in reducing the relaxant responses. The endomorphin effects were significantly reversed by the MOR antagonist CTAP. CTAP itself did not influence the EFS-induced relaxation. In summary, these data provide evidence that the endogenous MOR agonists endomorphin 1 and 2 can reduce nonadrenergic, noncholinergic neurotransmission in the rat gastric fundus smooth muscle via a pathway involving MORs. The physiological relevance of these findings remains to be established, since the data presented suggest that the endomorphins act as neuromodulators within NANC relaxant neurotransmission.  相似文献   

8.
Zhao QY  Chen Q  Yang DJ  Feng Y  Long Y  Wang P  Wang R 《Life sciences》2005,77(10):1155-1165
Endomorphin 1 (EM1) and endomorphin 2 (EM2) are highly potent and selective mu-opioid receptor agonists and have significant antinociceptive action. In the mu-selective pocket of endomorphins (EMs), Pro2 residue is a spacer and directs the Tyr1 and Trp3/Phe3 side chains into the required orientation. The present work was designed to substitute the peptide bond between Tyr1 and Pro2 of EMs with a reduced (CH2NH) bond and study the agonist potency and antinociception of EM1[psi] (Tyr[psi(CH2NH)]Pro-Trp-Phe-NH2) and EM2[psi] (Tyr[psi(CH2NH)]Pro-Phe-Phe-NH2). Both EM1[psi] and EM2[psi] are partial mu opioid receptor agonists showing significant loss of agonist potency in GPI assay. However, EMs[psi] exhibited potent supraspinal antinociceptive action in vivo. In the mice tail-flick test, EMs[psi] (1, 5, 10 nmol/mouse, i.c.v.) produced potent and short-lasting antinociception in a dose-dependent and naloxone (1 mg/kg) reversed manner. At the highest dose of 10 nmol, the effect of EM2[psi] was prolonged and more significant than that of EM2. In the rat model of formalin injection induced inflammatory pain, EMs[psi] (0.1, 1, 10 nmol/rat, i.c.v.), like EMs, exerted transient but not dose-dependent antinociception. These results suggested that in the mu-selective pocket of EMs, the rigid conformation induced by the peptide bond between Tyr1 and Pro2 is essential to regulate their agonist properties at the mu opioid receptors. However, the increased conformational flexibility induced by the reduced (CH2NH) bond made less influence on their antinociception.  相似文献   

9.
The effect of electrical field stimulation (EFS) on insulin (INS) and glucagon (GLU) secretion from normal and diabetic rat pancreas is poorly understood. In our study, EFS (5-20Hz, 50 V amplitude and 1.0 ms pulse width), when applied alone, resulted in a significant (p<0.05) increase in INS secretion from the pancreas of both normal and diabetic rats. Atropine (10(-5) M) did not inhibit the EFS (5 Hz)-evoked INS secretion in normal pancreas and failed to alter the effect of EFS (10-20 Hz) on INS secretion from the pancreas of both normal and diabetic rats. Propranolol (Prop) inhibited INS secretion to below basal level in the presence of EFS (5 Hz) but not at EFS (10- 20 Hz). Tetrodotoxin (TTX) also significantly (p = 0.002) inhibited INS secretion from normal pancreas in the presence of EFS (5-20 Hz). The decrease in insulin secretion observed when pancreatic tissue fragments were incubated in Prop and TTX in the presence of EFS was reversed by yohimbine (10(-5) M). In contrast, TTX did not significantly modify INS secretion from diabetic pancreas in the presence of EFS. EFS (5-20 Hz) significantly (p<0.05) increased GLU release from normal and diabetic rat pancreas when applied alone. Neither atropine, Prop nor TTX significantly modified GLU release from the pancreas of either normal or diabetic rats. This suggests that GLU secretion may be controlled through a different pathway. The EFS-evoked INS and GLU secretion is probably executed via different mechanisms. These mechanisms include 1) activation of cholinergic nerves by EFS; 2) EFS of alpha- and beta-adrenergic nerves; 3) activation of non-adrenergic non-cholinergic pathway by EFS; 4) EFS-induced depolarization and subsequent action potential in pancreatic endocrine cells and 5) electroporosity caused by EFS-induced membrane permeability. All of these effects may be summative. In conclusion, EFS (5-20 Hz), when applied alone, can evoke significant increases in INS and GLU secretion from the pancreas of both normal and diabetic rats. Insulin secretion is controlled via alpha-2 adrenergic (inhibition) and beta-adrenergic (stimulation) receptors. Glucagon secretion is enhanced by alpha2 adrenergic stimulation.  相似文献   

10.
Botulinum toxin injection into the pylorus is reported to improve gastric emptying in gastroparesis. Classically, botulinum toxin inhibits ACh release from cholinergic nerves in skeletal muscle. The aim of this study was to determine the effects of botulinum toxin on pyloric smooth muscle. Guinea pig pyloric muscle strips were studied in vitro. Botulinum toxin type A was added; electric field stimulation (EFS) was performed every 30 min for 6 h. ACh (100 microM)-induced contractile responses were determined before and after 6 h. Botulinum toxin caused a concentration-dependent decrease of pyloric contractions to EFS. At a low concentration (2 U/ml), botulinum toxin decreased pyloric contractions to EFS by 43 +/- 9% without affecting ACh-induced contractions. At higher concentrations (10 U/ml), botulinum toxin decreased pyloric contraction to EFS by 75 +/- 7% and decreased ACh-induced contraction by 79 +/- 9%. In conclusion, botulinum toxin inhibits pyloric smooth muscle contractility. At a low concentration, botulinum toxin decreases EFS-induced contractile responses without affecting ACh-induced contractions suggesting inhibition of ACh release from cholinergic nerves. At higher concentrations, botulinum toxin directly inhibits smooth muscle contractility as evidenced by the decreased contractile response to ACh.  相似文献   

11.
Effects of nonadrenergic and noncholinergic (NANC) inhibitory nerves on cholinergic neurotransmission were examined in isolated bronchial segments from cats in the presence of propranolol (10(-6) M) and indomethacin (10(-6) M) by use of electrical field stimulation (EFS) techniques. EFS caused contraction alone in tissues at the baseline tension and biphasic responses (contraction and relaxation) in tissues precontracted with 5-hydroxytryptamine. Contraction was abolished by atropine (10(-6) M), and relaxation was abolished by tetrodotoxin (10(-6) M). At the baseline tension, EFS at frequencies greater than 10 Hz inhibited the subsequent (4 min later) contraction induced by EFS at 1-5 Hz. EFS-induced inhibition was stimulus frequency dependent and reached maximum at 20 Hz. However, EFS at 20 Hz did not inhibit the subsequent contractile response to acetylcholine (10(-7) to 10(-3) M). Exogenously applied vasoactive intestinal peptide mimicked EFS-induced inhibitory effects, but substance P and calcitonin gene-related peptide did not. The inhibitory effect of EFS at 20 Hz was not altered by pyrilamine, cimetidine, naloxone, methysergide, phentolamine, BW755C, AF-DX 116, or removal of epithelium. These results imply that the NANC transmitter acts via presynaptic cholinergic receptors.  相似文献   

12.
The objective of the present study was to assess the influence of diabetes in the neuronal nitric oxide (NO) release elicited by electrical field stimulation (EFS, 200 mA, 0.3 ms, 1-16 Hz, for 30 s, at 1 min interval) in endothelium-denuded mesenteric artery segments from control and streptozotocin-induced diabetic rats, assessing the influence of protein kinase C (PKC) in this release. N(G)-nitro-L-arginine-methyl ester (L-NAME, 10 microM, a NO synthase inhibitor) enhanced EFS-elicited contractions in control, and specially in diabetic rats, whereas they were unaltered by AMT (5 nM, an inducible NO synthase inhibitor) and capsaicin (0.5 microM, a sensory neurone toxin). Calphostin C (0.1 microM, a PKC inhibitor) increased the contraction elicited by EFS in both types of arteries. This increase was further enhanced by calphostin C + L-NAME in diabetic rats. Phorbol 12,13-dibutyrate (PDBu, 1 microM) reduced and unaltered EFS-induced contractions in control and diabetic rats, respectively. The further addition of L-NAME reversed the reduction obtained in control rats, and enhanced the response observed in diabetic rats. These results suggest that the EFS-induced NO release from perivascular nitrergic nerves, that negatively modulates the contraction, which is synthesized by neuronal constitutive NO synthase. The NO synthesis is positively stimulated by PKC. This NO release is increased in diabetes, likely due to an increase in the activity of this enzyme. The sensory nerves of these arteries do not seem to be involved in the contractile response.  相似文献   

13.
We investigated possible pre- and postsynaptic effects of K+-induced depolarization on ferret tracheal smooth muscle (TSM) responsiveness to cholinergic stimulation. To assess electromechanical activity, cell membrane potential (Em) and tension (Tm) were simultaneously recorded in buffer containing 6, 12, 18, or 24 mM K+ before and after electrical field stimulation (EFS) or exogenous acetylcholine (ACh). In 6 mM K+, Em was -58.1 +/- 1.0 mV (mean +/- SE). In 12 mM K+, Em was depolarized to -52.3 +/- 0.9 mV, basal Tm did not change, and both excitatory junctional potentials and contractile responses to EFS at short stimulus duration were larger than in 6 mM K+. No such potentiation occurred at a higher K+, although resting Em and Tm increased progressively above 12 mM K+. The sensitivity of ferret TSM to exogenous ACh appeared unaffected by K+. To determine whether the hyperresponsiveness in 12 mM K+ was due, in part, to augmented ACh release from intramural airway nerves, experiments were done using TSM preparations incubated with [3H]choline to measure [3H]ACh release at rest and during EFS. Although resting [3H]ACh release increased progressively in higher K+, release evoked by EFS was maximal in 12 mM K+ and declined in higher concentrations. We conclude that small elevations in the extracellular K+ concentration augment responsiveness of the airways, by increasing the release of ACh both at rest and during EFS from intramural cholinergic nerve terminals. Larger increases in K+ appear to be inhibitory, possibly due to voltage-dependent effects that occur both pre- and postsynaptically.  相似文献   

14.
Borrelli F  Capasso R  Pinto A  Izzo AA 《Life sciences》2004,74(23):2889-2896
Ginger (Zingiber officinale rhizome) is a widespread herbal medicine mainly used for the treatment of gastrointestinal diseases, including dyspepsia, nausea and diarrhoea. In the present study we evaluated the effect of this herbal remedy on the contractions induced by electrical stimulation (EFS) or acetylcholine in the isolated rat ileum. Ginger (0.01-1000 microg/ml) inhibited both EFS- and acetylcholine-evoked contractions, being more potent in inhibiting the contractions induced by EFS. The depressant effect of ginger on EFS-induced contractions was reduced by the vanilloid receptor antagonist capsazepine (10(-5) M), but unaffected by the alpha(2)-adrenergic antagonist yohimbine (10(-7) M), the CB(1) receptor antagonist SR141716A (10(-6) M), the opioid antagonist naloxone (10(-6) M) or by the NO synthase inhibitor L-NAME (3 x 10(-4) M). Zingerone (up to 3 x 10(-4) M), one of the active ingredients of ginger, did not possess inhibitory effects. It is concluded that ginger possesses both prejunctional and postjunctional inhibitory effects on ileal contractility; the prejunctional inhibitory effect of ginger on enteric excitatory transmission could involve a capsazepine-sensible site (possibly vanilloid receptors).  相似文献   

15.
Cholinergic mechanisms are largely responsible for esophageal contraction in response to swallowing or to in vitro electrical field stimulation (EFS). After induction of experimental esophagitis by repeated acid perfusion, the responses to swallowing and to EFS were significantly reduced but contraction in response to ACh was not affected, suggesting that cholinergic mechanisms are damaged by acid perfusion but that myogenic mechanisms are not. Measurements of ACh release in response to EFS confirmed that release of ACh was reduced in esophagitis compared with normal controls. To examine factors contributing to this neuropathy, normal esophageal strips were incubated for 1-2 h with the proinflammatory cytokines IL-1beta (100 U/ml), IL-6 (1 ng/ml), or TNF-alpha (1 ng/ml). IL-1beta and IL-6 levels, measured by Western blot analysis, increased in esophagitis compared with normal circular muscle. IL-1beta and IL-6 reduced contraction in response to EFS (2-10 Hz, 0.2 ms) but did not affect ACh-induced contraction, suggesting that these cytokines inhibit ACh release without affecting myogenic contractile mechanisms. EFS-induced ACh release was significantly reduced in normal esophageal strips by incubation in IL-1beta or IL-6, suggesting that they may contribute to the contractility changes. TNF-alpha at 1 ng/ml, however, did not affect the response to ACh or to electrical stimulation but inhibited both at higher concentrations. TNF-alpha levels were low in normal muscle and did not increase with esophagitis. The data suggest that the proinflammatory cytokines IL-1beta and IL-6 contribute to reduced esophageal contraction by inhibiting release of ACh from myenteric neurons.  相似文献   

16.
Seale JV  Jessop DS  Harbuz MS 《Peptides》2004,25(1):91-94
Endomorphin 1 (EM-1) and EM-2 have been widely reported in the cells of the central nervous system (CNS) but limited research has been done regarding their distribution in the peripheral system. The occurrence of EM-1 and -2 in the spleen as measured by RIA and their ability to mediate immune function imply a role for EMs in this area. The current study examines the localization of EM-1 and -2 in the immune cells of the spleen of male and female rats via an immunohistochemical procedure. In both genders, EM-1 and -2 immunoreactive staining was predominantly present in macrophages and B cells with minimal EM immunoreactive staining in T cells. This is the first evidence of a differential distribution of EM-1 and -2 in cells of the immune system.  相似文献   

17.
This study investigates the effects of the islet hormones insulin (Ins), glucagon (Glu), and somatostatin (Som) with nerve stimulation (EFS) acetylcholine (ACh) and cholecytokinin-octapeptide (CCK-8) on amylase secretion and intracellular free calcium concentration [Ca(2+)](i) in the pancreas of age-matched control and diabetic rats. Either Ins, Glu or Som elicited small increases in amylase secretion from the pancreas of age-matched control animals compared to a much larger increase in amylase secretion with either EFS, ACh or CCK-8. Combining the islet hormones with either EFS, ACh or CCK-8 resulted in marked potentiation of amylase output. In the diabetic pancreas, the islet hormones had no effect on amylase secretion compared to diabetic control. Moreover, either EFS, ACh or CCK-8 evoked a much smaller increase in amylase output compared to age-matched control. In addition, the islet hormones failed to potentiate the secretory effects of either EFS, ACh or CCK-8. In fura-2 loaded acinar cells from age-matched control pancreas either Ins or Glu elicited a small increase in [Ca(2+)](i) whereas Som had no effect. Both ACh and CCK-8 evoked large increases in [Ca(2+)](i) compared to control. Combining either Ins, Glu or Som with either ACh or CCK-8 resulted in a marked elevation in [Ca(2+)](i) compared to the responses obtained with either the islet hormones, ACh or CCK-8 alone. In diabetic fura-2 loaded pancreatic acinar cells, the islet hormones had no effect on [Ca(2+)](i) compared to control and moreover, the responses were much smaller than those obtained in acinar cells from age-matched control. Both ACh and CCK-8 induced large increases in [Ca(2+)]( i) in diabetic acinar cells. However, combining the islet hormones with either ACh or CCK-8 failed to enhance [Ca(2+)](i) compared to the reponses obtained in acinar cells from age-matched control. The results suggests that [Ca(2+)](i) homeostasis is deranged during diabetes mellitus and this in turn is probably associated with reduced pancreatic amylase secretion.  相似文献   

18.
Liu J  Yu Y  Fan YZ  Chang H  Liu HM  Cui Y  Chen Q  Wang R 《Peptides》2005,26(4):607-614
Endomorphins, the endogenous, potent and selective mu-opioid receptor agonists, have been shown to decrease systemic arterial pressure (SAP) in rats. In the present study, responses to endomorphins were investigated in systemic vascular bed of alloxan-induced diabetic rats and in non-diabetic rats. Diabetes was induced by alloxan (220 mg/kg, i.p.) in male Wistar rats. At 4-5 weeks after the onset of diabetes, intravenous injections of endomorphins (1-30 nmol/kg) led to an increase of SAP and heart rate (HR) consistently and dosed-dependently. SAP increased 7.68+/-3.73, 11.19+/-4.55, 21.19+/-2.94 and 27.48+/-6.21% from the baseline at the 1, 3, 10 and 30 nmol/kg dose, respectively, of endomorphin 1 (n=4; p<0.05), and similar changes were observed in response to endomorphin 2. The hypertension could be antagonized markedly by i.p. 2 mg/kg of naloxone. On the other hand, bilateral vagotomy would attenuate the effects of hypertension and diminished the changes of HR in response to endomorphins. With diabetic rats, 6-10 weeks after the induction of diabetes, intravenous injections of endomorphins produced non-dose-related various changes in SAP, such as a single decrease, or a single increase, or biphasic changes characterized by an initial decrease followed by a secondary increase, or no change at all. These results suggest that diabetes may lead to the dysfunction of the cardiovascular system in response to endomorphins. Furthermore, the diabetic rats of 4-5 weeks after alloxan-treatment, the increase in SAP and HR caused by i.v. endomorphins might be explained by a changed effect of vagus and by a naloxone-sensitive mechanism.  相似文献   

19.
AimsThe effect of exercise training (ET) on vascular responsiveness in diabetes mellitus has been largely well studied. However, limited studies have investigated the effects of ET on functional responses of the corpus cavernosum (CC) in diabetic animals. Therefore, the aim of this study was to investigate whether prior ET prevents the impairment of erectile function in streptozotocin-induced diabetic rats.Main methodsRats were exercised for four weeks prior to the induction of diabetes, and then again for another 4 weeks thereafter. Concentration–response curves to acetylcholine, sodium nitroprusside, Y-27632, BAY 412272 and phenylephrine (PE) were obtained in CC. The excitatory and inhibitory effects of electrical-field stimulation were also evaluated.Key findingsPlasma SOD levels were markedly decreased in the sedentary diabetic group (D-SD) as compared to control sedentary animals (C-SD), approximately 53% (P < 0.05) and this reduction was restored in trained diabetic animals. Physical training restored the impairment of endothelium-dependent and -independent relaxation responses seen in the D-SD group. The potency values for Y-27632 in the CC were significantly reduced in the D-SD group, which was reversed by physical training. The impairment of electrical-field stimulation (EFS)-induced relaxation seen in the D-SD group was restored by physical training. On the other hand, both EFS-induced contractions and concentration–response curves to PE in cavernosal strips were not modified by either diabetes or physical training.SignificancePractice of regular physical exercise may be an important approach in preventing erectile dysfunction associated with diabetes mellitus by re-establishment of the balance between NO production and its inactivation.  相似文献   

20.
The peripheral airway innervation of the lower respiratory tract of mammals is not completely functionally characterized. Recently, we have shown in rats that precision-cut lung slices (PCLS) respond to electric field stimulation (EFS) and provide a useful model to study neural airway responses in distal airways. Since airway responses are known to exhibit considerable species differences, here we examined the neural responses of PCLS prepared from mice, rats, guinea pigs, sheep, marmosets and humans. Peripheral neurons were activated either by EFS or by capsaicin. Bronchoconstriction in response to identical EFS conditions varied between species in magnitude. Frequency response curves did reveal further species-dependent differences of nerve activation in PCLS. Atropine antagonized the EFS-induced bronchoconstriction in human, guinea pig, sheep, rat and marmoset PCLS, showing cholinergic responses. Capsaicin (10 µM) caused bronchoconstriction in human (4 from 7) and guinea pig lungs only, indicating excitatory non-adrenergic non-cholinergic responses (eNANC). However, this effect was notably smaller in human responder (30±7.1%) than in guinea pig (79±5.1%) PCLS. The transient receptor potential (TRP) channel blockers SKF96365 and ruthenium red antagonized airway contractions after exposure to EFS or capsaicin in guinea pigs. In conclusion, the different species show distinct patterns of nerve-mediated bronchoconstriction. In the most common experimental animals, i.e. in mice and rats, these responses differ considerably from those in humans. On the other hand, guinea pig and marmoset monkey mimic human responses well and may thus serve as clinically relevant models to study neural airway responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号