首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The plasticity and function of the pallial organs were studied in the Pacific oyster Crassostrea gigas from three sites of Bourgneuf Bay (French Atlantic coast, 46-47°N, 1-2°W) characterized by different turbidity conditions. Labial palp area was closely and positively related to the turbidity gradient. No clear pattern was established between the gill area and the gradient of suspended particulate matter (SPM). The functional responses induced by these morphological variations were investigated in the laboratory by means of ecophysiological experiments and endoscopic observations. Oysters with different pallial organ areas were supplied with mixed suspensions of heat-killed Tetraselmis suecica and living Skeletonema costatum added to different concentrations of kaolinite to simulate low (SPM = 8.5 ± 0.4 mg l− 1) and high (SPM = 48.3 ± 1.4 mg l− 1) turbidity conditions. At each SPM concentration, heat-killed T. suecica were preferentially rejected in pseudofaeces compared to S. costatum, indicating a preingestive particle selection. At low seston load, clearance rate (CR) was closely and positively related to gill area and particle selection occurred only on the gills, between the ventral grooves and dorsal tracts. At higher seston load, palps exhibited a particle-sorting capacity dependent on gill area. Indeed, with small gills, an increase in selection efficiency (SE) and CR was positively related to palp area. On the other hand, large gills processed the particles without an effect of palps but with a decrease in CR. The functional responses associated with pallial organ variations clearly showed that the preingestive particle processing in oysters is an integrated mechanism dependant on the gill and labial palp areas.  相似文献   

2.
3.
A paramyxea, Marteilioides chungmuensis, causes the irregular enlargement of the ovary in the Pacific oyster, Crassostrea gigas in Korea and Japan. The knowledge about the life cycle of the parasite has been limited to the sporulation stages within the oocyte of oysters. In this study, we used the parasite-specific DNA probes and electron microscopy to experimentally infected oysters in a field and successfully clarified early developmental stages of the parasite. The parasite invaded the oysters through the epithelial tissues of the gills, mantle and labial palps. Extrasporogony repeatedly occurred in the connective tissues by binary fusion. The inner cell of the extrasporogonic stage migrated into the gonadal epithelium, invaded the oocyte to start sporulation.  相似文献   

4.
The selection of food particles by Abra tenuis (Montagu), A. alba (Wood) and A. nitida (Müller) has been investigated.Material for ingestion smaller than 30μm is not selected according to size by A. tenius. Particles smaller than 0.5 μm are retained by the palliai organs and ingested but only particles larger than 1 μm appear to be retained with an efficiency approaching 100 %. The mesh size of the gill filter is found to be ≈ 3.0 × 0.5 μm.A. tenuis does not appear able to discriminate between particles smaller than 20 μm by their food value; however, relatively large silica particles which are devoid of food are partially rejected by the labial palps in favour of particles of similar size but having a bacterial coating. To a lesser extent the physical nature of particles seems to influence their selection by A. tenuis; clean angular particles are rejected in favour of clean rounded ones.Small, light particles appear to be transported on the gills directly to the mouth without coming into contact with the palps. Larger, heavier particles tend to drop from the gill to be caught by the palps which extend posteriorly to cup the entire ventral margin of the inner demibranch when the animal is feeding.The material ingested by A. alba is significantly finer than that taken into the mantle cavity indicating that the pallial organs actively select food by size. Selection of material for ingestion by size in A. nitida appears to be optional since only some of the animals examined had stomach contents significantly finer than material from the mantle cavity.  相似文献   

5.
In order to investigate glycogen metabolism in the oyster Crassostrea gigas, the distribution of storage cells in the whole animal was studied before histological and biochemical characterization. These cells were found mainly in the labial palps, the mantle, and gonadal area and also in gills and the digestive area. Storage cells from palps, mantle, and gonad presented the same morphological features and the same seasonal glycogen variations. Storage cells were isolated from the labial palps and the mantle plus gonadal area of the oyster by enzymatic dispersion and centrifugation through discontinuous Percoll gradient. These cells have a modal density of 1.043 g/ml. An ultrastructural study confirmed that glycogen is present in the cytoplasm either as fine particles or sequestered within vesicles. Glucose incorporation into glycogen was evaluated in vitro using [U-14C]glucose: the incorporation in isolated cells increased linearly for at least 8 hours, was proportional to the cell concentration, and showed saturation kinetics with respect to the exogenous glucose concentration. Received March 18, 1999; accepted September 27, 1999.  相似文献   

6.
Previous studies have demonstrated that bivalve molluscs respond to changing food conditions through processes such as preferential selection and ingestion of particulate matter. Little is known, however, about the underlying mechanisms accountable for these responses. To further explain feeding processes at the level of the pallial organs, we determined pallial cavity residence times, or the amount of time it took particles to travel from the inhalant aperture to the stomach, in two species of bivalves, Crassostrea virginica and Mytilus edulis, under conditions of differing particle quality, particle concentration, and temperature. From these residence times, particle-handling times on the labial palps were determined. Diets of three different qualities were tested, including Rhodomonas lens cells, particles prepared from ground Spartina sp. detritus, and a 50/50 mixture of both. Bivalves were delivered one of the three diets along with 10-μm fluorescent polystyrene beads (tracer), removed from feeding chambers at intervals from 30 s up to 20 min, and placed in liquid nitrogen to halt particle transport. Digestive systems of bivalves were then dissected and examined for the presence of tracer beads. Particle-residence times in the pallial cavity and handling times on the labial palps of C. virginica were significantly affected by changes in diet type. Particle-handling times on the palps decreased with increasing diet quality and ranged from 2.2 min (100% R. lens) to 22.8 min (100% ground Spartina sp.), accounting for 88% and 99%, respectively, of the total time particles spent in the pallial cavity. In contrast, diet quality had little effect on particle-residence times in the pallial cavity of M. edulis. However, residence times were affected by temperature and diet concentration. Temperature significantly affected residence times at particle concentrations of both 20 and 100 particles μl−1, whereas particle concentration affected residence times at 20 °C, but not at 5 °C. Particle-handling times on the labial palps ranged from less than 1 to 5.5 min, depending on temperature and concentration, accounting for 50% to 82%, respectively, of the total time particles spent in the pallial cavity. We suggest that (1) observed interspecific differences in particle handling on the labial palps may be due to differences in palp morphology and function, and (2) particle sorting and selection on the labial palps is a rate-limiting step of pre-ingestive feeding processes in by bivalves.  相似文献   

7.
Oyster reefs are one of the most threatened marine habitats on earth, with habitat loss resulting from water quality degradation, coastal development, destructive fishing practices, overfishing, and storm impacts. For successful and sustainable oyster reef restoration efforts, it is necessary to choose sites that support long-term growth and survival of oysters. Selection of suitable sites is critically important as it can greatly influence mortality factors and may largely determine the ultimate success of the restoration project. The application of Geographic Information Systems (GIS) provides an effective methodology for identifying suitable sites for oyster reef restoration and removes much of the uncertainty involved in the sometimes trial and error selection process. This approach also provides an objective and quantitative tool for planning future oyster reef restoration efforts. The aim of this study was to develop a restoration suitability index model and reef quality index model to characterize locations based on their potential for successful reef restoration within the Mission-Aransas Estuary, Texas, USA. The restoration suitability index model focuses on salinity, temperature, turbidity, dissolved oxygen, and depth, while the reef quality index model focuses on abundance of live oysters, dead shell, and spat. Size-specific Perkinsus marinus infection levels were mapped to illustrate general disease trends. This application was effective in identifying suitable sites for oyster reef restoration, is flexible in its use, and provides a mechanism for considering alternative approaches. The end product is a practical decision-support tool that can be used by coastal resource managers to improve oyster restoration efforts. As oyster reef restoration activities continue at small and large-scales, site selection criteria are critical for assisting stakeholders and managers and for maximizing long-term sustainability of oyster resources.  相似文献   

8.
The effects of season and qualitative selection capacity on trophic relationships between two sympatric invasive suspension-feeders, Crepidula fornicata and Crassostrea gigas, were investigated in Bourgneuf Bay (France) from January 2003 to June 2004. Carbon and nitrogen stable isotopic deviations, δ13C and δ15N, of common Atlantic slippersnails and Pacific oysters were analysed relative to isotopic composition and availability of end-members.Slippersnail deviations were less variable over the sampling period compared with those of oysters. Significant differences between δ13C and δ15N of C. fornicata and C. gigas were found from winter to early summer, and linked to major isotopic changes in oysters. We identified three distinct seasonal periods: January to March when oysters were 15N-enriched compared to slippersnails and to themselves at other times of the year, April to June-July when oysters showed a 15N-depletion and a more marked 13C-depletion compared to slippersnails and to themselves at other times of the year, and July-August to December when both species presented similar carbon and nitrogen deviations. Species-specific differences in qualitative selection capability may explain these seasonal differences in isotopic deviations. Whereas the isotopic composition of the indiscriminate suspension-feeding slippersnails reflects the composition of the seston throughout the year, the oyster is capable of qualitative selection. The oyster isotopic compositions are consistent with a facultative activation of selection mechanisms under conditions of qualitative and quantitative food limitation, notably the preferential ingestion and assimilation of the dominant organic source in the suspended pool.We conclude that C. fornicata and C. gigas are trophic competitors only in winter and spring at this site, where detrital end-members are major POM components. These results underscore (1) the importance of long-term (annual) studies in the evaluation of potential trophic competition, and (2) the necessity to include the qualitative selection capacities of suspension-feeders in future interpretations of trophic relationships in marine coastal ecosystems.  相似文献   

9.
The sensilla located on the antennae and maxillary and labial palps of the larvae of 64 beetle species from 22 families were studied using electron microscopy. The larvae of beetles living in different habitats and having different trophic specializations possess a uniform structure of the sensory organs. They are composed of two groups of sensilla on the apical and subapical segments of the antennae, one apical group of sensilla on both maxillary and labial palps, and one or several digitiform sensilla on the lateral surface of the maxillary and, occasionally, labial palp. The external morphology of the sensory organs is adaptive and represents modifications of the initial type. Band-shaped sensilla or placoid sensilla, clearly different from the initial sensory organs, appear in some taxa as rare exceptions, while other groups display either partial reduction of the receptor organs (Gyrinidae) or reduction of the cuticular parts of the sensilla (Cantharidae).  相似文献   

10.
The capture, transport, and sorting of particles by the gills and labial palps of the freshwater mussel Dreissena polymorpha were examined by endoscopy and video image analysis. More specifically, the morphology of the feeding organs in living zebra mussels was described; the mode and speeds of particle transport on the feeding organs was measured; and the sites of particle selection in the pallial cavity were identified. Particle velocities (outer demibranch lamellae, 90 microm s(-1); inner demibranch lamellae, 129 microm s(-1); marginal food groove of inner demibranchs, 156 microm s(-1); dorsal ciliated tracts, 152 microm s(-1)), as well as the movement of particles on the ctenidia and labial palps of D. polymorpha, are consistent with mucociliary, rather than hydrodynamic, transport. Particles can be sorted on the ctenidia of zebra mussels, resulting in a two-layer transport at the marginal food groove of the inner demibranch. That is: preferred particles are transported inside the marginal groove proper, whereas particles destined for rejection are carried superficially in a string of mucus. Sorting also occurs at the ventral margin of the outer demibranch; desirable particles are retained on the outer demibranch, whereas unacceptable particles are transferred to the inner demibranch and ultimately excluded from ingestion. We suggest that the structure of homorhabdic ctenidia does not preclude particle sorting, and that some ecosystem modifications attributed to zebra mussels may ultimately be due to ctenidial sorting mechanisms.  相似文献   

11.
12.
Both adults and early stages of Pseudomyicola spinosus (Cyclopoidea, Myicolidae) occur on the labial palps as well as in the gut of the rock oyster Crassostrea glomerata. There is evidence to suggest movements of the copepod to and from the gut. Clear evidence of damage to the epithelial walls of the gut is seen in several regions, particularly in confined portions of the stomach near the openings of the ducts of the digestive diverticula. In addition to mechanical injuries, changes from a columnar to a low squamous epithelium have been observed in one instance; an increase of leucocytes has also been observed in another specimen. The evidence suggests that the myicolid copepod is a parasite in the gut of the oyster.  相似文献   

13.
Urastoma cyprinae occurs on the gills of various bivalves species, including the eastern oyster Crassostrea virginica. While the worm is known to cause severe gill disruption in mussels, no evidence of this nature has been described for oysters. Nonetheless, high levels of U. cyprinae have been reported in oysters, which may, in turn, reduce the oyster's overall condition. U. cyprinae is strongly attracted to oyster gill mucus, which is suggested to play an active role in the worm's feeding activities. Furthermore, host mucus contains many active components, including proteases, which have been suggested to play a defensive role against invading organisms. It follows, therefore, that some of the interactions between U. cyprinae and oysters take place in host gill mucus. Studies were undertaken to determine whether the presence of U. cyprinae altered the electrophoretic profiles of oyster gill mucus, using proteases as indicators. Findings reveal that oyster gill mucus contains three proteases, a putative acid protease at 96 kDa, a zinc metalloprotease at 64 kDa, and a serine protease at 33 kDa. Results based on experiments using mucus preparations extracted from infected and noninfected oysters, along with those using lyophilized mucus incubated with live U. cyprinae, confirm that the presence of U. cyprinae alters the protease composition of gill mucus. The present data demonstrate that both U. cyprinae and host gill mucus actively secrete proteases. While the precise roles of these enzymes still need to be defined, one of their functions may be associated with digestion-related activities induced by the worm.  相似文献   

14.
Pacific oysters, Crassostrea gigas, have been introduced throughout much of the world, become invasive in many locations and can alter native assemblage structure, biodiversity and the distribution and abundance of other species. It is not known, however, to what extent their effects on biodiversity change as their cover increases, and how these effects may differ depending on the environmental context. Experimental plots with increasing cover of oysters were established within two estuaries in two different habitats commonly inhabited by C. gigas, (mussel-beds and mud-flats) and were sampled after 4 and 15 months. Within mud-flat habitats, macroscopic species living on or in the substratum increased in richness, Shannon–Wiener diversity and number of individuals with oyster cover. In mussel-bed habitats, however, these indices were unaffected by the cover of oysters except at one estuary after 15 months when species richness was significantly lower in plots with the greatest cover of oysters. Assemblage structure differed with oyster cover in mud-flats but not in mussel-beds, except at 100 % cover in one location and at one time. Within mud-flats at one location and time (of four total tests), assemblages became more homogenous with increasing cover of oysters leading to a significant decrease in β-diversity. These responses were primarily underpinned by the facilitation of several taxa including a grazing gastropod (Littorina littorea), an invasive barnacle (Austrominius modestus) and a primary producer (Fucus vesiculosus) with increasing cover of oysters. Although there were consistent positive effects of C. gigas on mud-flat biodiversity, effects were weak or negative at higher cover on mussel-beds. This highlights the need for the impacts of invasive species to be investigated at a range of invader abundances within different environmental contexts.  相似文献   

15.
Range expansion and population establishment of individual species can have significant impacts on previously established food webs and predator-prey dynamics. The stone crab (Menippe spp.) is found throughout southwestern North Atlantic waters, from North Carolina through the Gulf of Mexico and the Central American Caribbean, including the Greater Antilles. Recent observations suggest that stone crabs have become better established on certain oyster reefs in North Carolina than in the early 1900s when they we first observed in NC. To assess the predatory impact of stone crabs on oysters, we (1) quantified stone crab densities on subtidal oyster reefs in Pamlico Sound, NC using scuba surveys, and (2) conducted laboratory predation experiments to assess the functional response of stone crabs to varying densities of oysters. We then (3) analyzed previously unpublished functional response data on another important oyster predator, the mud crab Panopeus herbstii. Finally, we (4) compared and contrasted potential predatory impacts of stone, mud and blue crabs (Callinectes sapidus). The functional response data and analyses for both stone crabs and mud crabs were consistent with a type II functional response. Mud crabs, on a m2 basis, inflicted the highest proportional mortality on oysters over a 24 hour period, followed by stone and then blue crabs. Proportional mortality did not vary significantly with oyster size; however, relatively small and large oysters were consumed disproportionately less than medium-sized oysters, likely due to the mechanical inability of stone crabs to handle small oysters, and the inability to crush large oysters. Although stone crabs appear to be established in Pamlico Sound at densities equivalent to densities in other systems such as the U.S. Florida Panhandle, their predatory activities on oysters are not expected to have as significant a negative impact on oyster populations compared to other resident predators such as mud crabs.  相似文献   

16.
Oocysts of Cryptosporidium parvum placed in artificial seawater at salinities of 10, 20, and 30 ppt at 10°C and at 10 ppt at 20°C were infectious after 12 weeks. Those placed in seawater at 20 ppt and 30 ppt at 20°C were infectious for 8 and 4 weeks, respectively. These findings suggested that oocysts could survive in estuarine waters long enough to be removed by filter feeders such as oysters. Thereafter, 30 Eastern oysters, Crassostrea virginica, were collected with a dredge or with hand tongs at each of six sites within Maryland tributaries of the Chesapeake Bay in May and June and in August and September of 1997. Hemocytes and gill washings from all oysters were examined for the presence of Cryptosporidium oocysts and Giardia cysts by immunofluorescence microscopy utilizing a commercially available kit containing fluorescein isothiocyanate-conjugated monoclonal antibodies. Giardia was not detected by this method from any of the 360 oysters examined. Presumptive identification of Cryptosporidium oocysts was made in either hemocytes or gill washings of oysters from all six sites both times that surveys were conducted. In addition, during August and September, for each of the six sites, hemocytes from the 30 oysters were pooled and gill washings from the oysters were pooled. Each pool was delivered by gastric intubation to a litter of neonatal mice to produce a bioassay for oocyst infectivity. Intestinal tissue from two of three mice that received gill washings from oysters collected at a site near a large cattle farm and shoreline homes with septic tanks was positive for developmental stages of C. parvum. These findings demonstrate for the first time that oysters in natural waters harbor infectious C. parvum oocysts and can serve as mechanical vectors of this pathogen.  相似文献   

17.
Adult moths possess an organ in their labial palps, the labial-palp pit organ, which is specialized for sensing carbon dioxide (CO2). They use CO2 as a cue to detect healthy plants and find food or lay eggs on them. The molecular bases of the CO2 receptor in Drosophila melanogaster and Aedes aegypti have been reported, but the molecular mechanisms of the CO2 receptor in Lepidoptera remains elusive. In this study, we first re-examined three putative Helicoverpa armigera CO2 gustatory receptor genes (HarmGr1, HarmGr2, and HarmGr3), and then analyzed expression patterns of them. RT-PCR results verified they were predominantly expressed in the labial palps of H. armigera. Thus, we used in situ hybridization to localize the expression of three genes in the labial palps. We found that all three genes were co-expressed in the same cells of the labial palps. Next, we employed the Xenopus laevis oocyte expression system and the two-electrode voltage-clamp recording to study the function of the three genes. Results showed that only oocytes co-expressing HarmGr1 and HarmGr3 or co-expressing HarmGr1, HarmGr2 and HarmGr3 gave robust responses to NaHCO3. Finally, we confirmed that the sensory cells in labial palps of both females and males show dose dependent responses to CO2 stimuli by using single sensillum recording. Our work uncovers that HarmGr1 and HarmGr3 are indispensable and sufficient for CO2 sensing in labial palps of H. armigera.  相似文献   

18.
Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small‐fetch, gradual‐sloped shoreline), “ramp” (large‐fetch, gradual‐sloped shoreline), and “scarp” (large‐fetch, steep‐sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small‐fetch, gradual‐sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat‐related functions (prey availability and refuge) already present along existing salt marsh borders.  相似文献   

19.
The involvement of algal chemical cues in the pre-ingestive selection of food particles in Crassostrea gigas was studied using a new approach. Live cells of two microalgal species, Nitzschia closterium and Tetraselmis suesica, were separately entrapped in small alginate microcapsules using an emulsification/internal gelation method. Microcapsule size was adjusted to be within the range of particles ingested by oysters. Using this technique, about 80% of microcapsules had a diameter ranging from 21 to 100 μm. The monitoring of entrapped algae showed that phytoplankton cells remained alive and maintained an active growth for at least 24 days. In particle selection bioassays, adult C. gigas were fed a mixture of microcapsules containing the above algae species as well as control empty alginate microcapsules. The comparison of the proportions of each microcapsule type in the diet and in pseudofeces revealed that those containing T. suesica were significantly ingested while those containing N. closterium were preferentially rejected. Since microcapsule material (alginate matrix) prevented physical contacts between algae cells and oyster feeding organs, this study clearly demonstrate that extracellular metabolites produced by microalgae play a crucial role in the pre-ingestive selection of particles in suspension-feeding bivalves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号