首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.  相似文献   

2.
Association of protein kinase C activation with IL 2 receptor expression   总被引:7,自引:0,他引:7  
Tac antigen (as a measure of the IL 2 receptor) acquisition and regulation by IL 2, an antigen-receptor agonist (anti-T3), phorbol esters, and phytohemagglutinin (PHA) were studied. Phorbol esters stimulated de novo acquisition of Tac antigen, which was associated with the subcellular redistribution of protein kinase C (PK-C) from cytosol to particulate membranes of human T lymphocytes. PHA and anti-T3 (alpha-T3) antibody also stimulated a transient redistribution and activation of PK-C that reached a maximum within 20 min after stimulation. Both phorbol esters and alpha-T3 could increase Tac expression and stimulate PK-C translocation on 5 and 12 day activated T cells that were at the G0/G1 stage of the cell cycle due to IL 2 deprivation. Tac antigen-specific mRNA was seen in the nucleus within 2 hr after stimulation. In contrast, IL 2 alone could only increase Tac expression and stimulate PK-C translocation on day 5 but not day 12 activated T cells. IL 2 synergizes with alpha-T3 and phorbol ester for the regulation of Tac expression. Although IL 2 increased expression of Tac, the majority if not all of these receptors possessed low affinity for IL 2. These data suggest that the activation of PK-C is a common transmembrane signal shared by IL 2 and antigen stimulation. The results also imply that PK-C activation is necessary for the regulation of Tac antigen expression.  相似文献   

3.
To assess the role of protein kinase-C (PK-C) in the growth and differentiation of small intestinal enterocytes, IEC-6 cells (a cell line derived from the crypts of rat small intestine) were incubated with factors known to induce growth (insulin, epidermal growth factor, gastrin, somatostatin and transferrin) or differentiation (transforming growth factor-beta, retinoic acid and phorbol 12-myristate 13-acetate (PMA)). Cell proliferation (3H-thymidine incorporation) and PK-C activity (Ca++/phospholipid dependent) were measured. Among growth promoting factors only epidermal growth factor, insulin and transferrin were associated with increased 3H-thymidine incorporation, and none of these agents induced PK-C activation as measured by its translocation from cytosol to membrane fraction. Of the differentiation inducing factors, only PMA translocated PK-C from cytosol to membrane. PMA also inhibited 3H-thymidine incorporation in a dose dependent manner. These results suggest that growth and proliferation of enterocytes occur independent of PK-C signal transduction.  相似文献   

4.
The capacity of human monocytoid cell lines and peripheral blood monocytes to modulate their expression of plasminogen receptors has been assessed. After PMA stimulation, THP-1 or U937 monocytoid cells were separated into adherent and nonadherent populations. Plasminogen bound to adherent cells with similar capacity and affinity as to nonstimulated cells. In contrast, the nonadherent cells bound plasminogen with 5-17-fold higher capacity (without a change in affinity). This increase was selective as urokinase bound with similar affinity and capacity to the adherent and nonadherent populations. Upregulation of plasminogen receptors on the nonadherent monocytoid cells was rapid, detectable within 30 min, and reversible, adhesion of the nonadherent cells resulted in a sixfold decrease in plasminogen binding within 90 min. The increase in plasminogen binding to the nonadherent cells was associated with a marked increase in their capacity to generate plasmin activity from cell-bound plasminogen. PMA stimulation of human peripheral blood monocytes increased their expression of plasminogen receptors by two- to fourfold. This increase was observed in both adherent and nonadherent monocytes. Freshly isolated monocytes maximally bound 5.0 x 10(5) plasminogen molecules per cell, whereas monocytes cultured for 18 h or more maximally bound 1.7 x 10(7) molecules per cell, a 30-fold difference in receptor number. These results indicate that both monocytes and monocytoid cell lines can rapidly and markedly regulate their expression of plasminogen binding sites. As enhanced plasminogen binding is correlated with an increased capacity to generate plasmin, an enzyme with broad substrate recognition, modulation of plasminogen receptors may have profound functional consequences.  相似文献   

5.
Human peripheral blood monocytes can be separated into two subpopulations which differ in the efficiency of their adherence to glass after 16 hours of incubation. The adherent subpopulation was found to be about twice as effective in binding mannose-resistant E. coli 0-124, mannose-sensitive E. coli 0-128 and opsonised E. coli than the nonadherent one. In addition, reduction of cytochrome C in response to E. coli binding or 12-myristate 13-acetate (PMA) stimulation was two fold higher in adherent cells. The binding of E. coli O-124 and the superoxide generation stimulated by E. coli were inhibited by the addition of mannose only in the adherent monocytes, indicating the presence of mannose receptors on the cell surface in the adherent subpopulation. The treatment of the nonadherent cells with 0.1-1000 U/ml of Interferon (IFN-gamma) for 24 hours resulted in a dose dependent increase in superoxide generation. After 72 hours of incubation with IFN-gamma (1000 U/ml) the amount of superoxide generated by the nonadherent cells was elevated to 20.5 +/- 1.4 nmoles/10(6) cells/15 min, similar to that of the adherent cells (24.5 +/- 1.2 nmoles/10(6) cells/15 min untreated adherent monocytes). The generation of superoxide in the IFN-gamma treated nonadherent monocytes stimulated by E. coli 0-128 was significantly reduced by addition of mannose.  相似文献   

6.
To determine whether activation of protein kinase C is involved in the proliferation of interleukin-3 (IL-3) -dependent cells, we examined the effect of tumor-promoting phorbol esters on the in vitro proliferation of the IL-3-dependent cell lines FD and DA-1. The viability of FD and DA-1 cells cultured for 24 hours in 100 nM phorbol myristate acetate (PMA) and 10% FCS was similar to that of cells cultured in 25% WEHI-3 conditioned medium as a source of IL-3, and 10% FCS. FD cells failed to proliferate in concentrations of FCS of up to 50%, while DA-1 cell proliferation was not markedly influenced by FCS. By contrast, PMA promoted the proliferation of FD and DA-1 cells in the absence of FCS and enhanced their proliferation in the presence of 10% FCS, 60- and 20-fold, respectively. Stimulation of proliferation was achieved with as little as 10 nM PMA and was maximal at 100 nM PMA. Low concentrations (0.05-0.1%) of WEHI-3 CM promoted the proliferative response of FD and DA-1 cells to PMA, but at concentrations of WEHI-3 CM greater than 0.8%, no further increment in proliferation was obtained with PMA. As little as 1/2 hour of exposure to phorbol esters was sufficient to cause translocation of protein kinase C from the cytosol to the membranes of DA-1 cells, and 1 hour of exposure to phorbol esters was sufficient to stimulate DNA synthesis. A protein kinase C inhibitor, H-7, at a concentration of 10 microM inhibited phorbol ester-induced stimulation of DA-1 cell proliferation. When DA-1 cells were exposed to the calcium ionophore A23187 in addition to both a phorbol ester and IL-3, their proliferation was enhanced over that stimulated by only the phorbol ester and IL-3. The data indicate that stimulation of proliferation of IL-3-dependent cells involves the activation of protein kinase C.  相似文献   

7.
Stimulation of hepatocytes by the tumor promoter phorbol 12-myristate 13-acetate (PMA) caused translocation of cytosolic Ca2+/phospholipid-dependent protein kinase C (PK-C). The major part of PK-C activity (greater than 80%) was associated with the membrane fraction after 30 min. During the following 6 h protein kinase C activity decreased to less than 10%. Minor amounts of Ca2+/phospholipid-independent PK-C activity were found in the cytosol fraction at all times; they temporarily increased 2.5-fold with PMA and decreased after 1 h. Cyclosporin A did not affect the translocation of PK-C from the cytoplasm to the membrane fraction, but the decrease of PK-C activity following translocation was blocked. No marked increase of Ca2+/phospholipid-independent PK-C activity was observed in the cytosol in the presence of cyclosporin A. Leupeptin, which is known to inhibit Ca2+-requiring non-lysosomal proteinases (e.g. calpain), showed an effect similar to cyclosporin A. Both agents reduced proteolytic degradation of cellular proteins observed in isolated hepatocytes after PMA treatment. Ca2+-ionophore A23187 in high doses (greater than 10(5) M) partly reversed cyclosporin A and leupeptin action.  相似文献   

8.
To localize activated protein kinase C (PKC) in smooth muscle cells, an antibody directed to the catalytic site of the enzyme was used to assess PKC distribution by immunofluorescence techniques in gastric smooth muscle cells isolated from Bufo marinus. An antibody to vinculin was used to delineate the cell membrane. High-resolution three-dimensional images of immunofluorescence were obtained from a series of images collected through focus with a digital imaging microscope. Cells were untreated or treated with agents that increase PKC activity (10 microM carbachol for 1 min, 1 microM phorbol 12-myristate 13-acetate (PMA) for 10 min), or have no effect on PKC activity (1 micrometer 4-alpha phorbol, 12,13-didecanoate (4-alpha PMA)). In unstimulated cells, activated PKC and vinculin were located and organized at the cell surface. Cell cytosol labeling for activated PKC was sparse and diffuse and was absent for vinculin. After treatment with carbachol, which stimulates contraction and PKC activity, in addition to the membrane localization, the activated PKC exhibited a pronounced cytosolic fibrillar distribution and an increased total fluorescence intensity relative to vinculin. The distributions of activated PKC observed after PMA but not 4-alpha PMA were similar to those observed with carbachol. Our results indicate that in resting cells there is a pool of activated PKC near the cell membrane, and that after stimulation activated PKC is no longer membrane-confined, but is present throughout the cytosol. Active PKC appears to associate with contractile filaments, supporting a possible role in modulation of contraction.  相似文献   

9.
Peritoneal B cells respond to phorbol esters in the absence of co-mitogen   总被引:3,自引:0,他引:3  
B cells obtained by irrigation of the peritoneal cavity differ from splenic B cells in signaling requirements for the initiation of DNA synthesis. Splenic B cells are stimulated to enter S phase by phorbol esters in conjunction with a second signal provided by calcium ionophore; however, splenic B cells are not stimulated by phorbol ester alone. In contrast, peritoneal B cells from NZB and BALB/c mice were stimulated to incorporate tritiated thymidine by each of the phorbol esters, PMA and phorbol dibutyrate, acting alone. Stimulation of peritoneal B cells was apparent when cells were cultured at lower than usual cell densities, and responses were unaffected by coculture with splenic B cells. Responding cells adhered to plastic petri dishes coated with anti-mouse IgM antibody, but were not completely removed by treatment with anti-Ly-1.2 antibody plus C. These results indicate that phorbol esters constitute a complete signal that stimulates some peritoneal B cells to enter S phase.  相似文献   

10.
11.
1. When rat astrocytes in primary culture were incubated with bradykinin, inositol phosphate formation and arachidonic acid release were stimulated. 2. By themselves, phorbol esters inhibited inositol phosphate formation, but phorbol esters and other cell-permeant diacylglycerol analogues stimulated arachidonic acid release. Preincubation of the cells with phorbol esters or diacylglycerol analogues blocked bradykinin-stimulated inositol phosphate formation but augmented bradykinin-stimulated arachidonic acid release. 3. The present results suggest that, in astrocytes, bradykinin activates at least two signal transduction pathways bradykinin stimulates a phosphatidylinositol-specific phospholipase C leading to enhanced inositol phosphate formation, and bradykinin stimulates a second phospholipase to enhance arachidonic acid release. The pathways may be distinguished using phorbol esters and other diacylglycerol mimetics. 4. The possibility is raised that diacylglycerol, formed in response to bradykinin, may serve as a transducer of receptor-receptor interactions by altering the ability of receptors to stimulate phospholipase activity.  相似文献   

12.
Phorbol 12-myristate 13-acetate (PMA) induces the differentiation of the human promyelocytic cell line, HL60, towards adherent macrophage-like cells within 2 days. We have examined the early effects of PMA on inositol phosphates and on diacylglycerol production, two second messengers derived from inositol lipids. In proliferating HL60 cells, PMA induced a time- and concentration-dependent decrease in inositol phosphate levels. Maximal effects were seen after 1 h at 10 nM PMA. PMA also induced the translocation of protein kinase C from the cytosol to the membrane. Comparison between the differentiating effects of several phorbol esters and of 1-oleoyl-2-acetylglycerol with their ability to inhibit inositol phosphate formation suggests that the two effects are correlated.  相似文献   

13.
Phorbol ester treatment of intact neutrophils both stimulates protein kinase C (PK-C) and causes the rapid proteolytic conversion to a cytosolic, co-factor independent fragment, protein kinase M (PK-M). In intact neutrophils, phorbol ester treatment activates the NADPH-oxidase, the enzyme responsible for the oxidative burst. Addition of purified PK-M to resting neutrophil light density membranes activated the NADPH-oxidase in the presence of PS, ATP and Mg2+. A 3.5-fold greater stimulation of oxidase (ca. 25 nmoles O2-/min/mg membrane protein) was obtained with comparable PK-M concentrations to that observed with the reconstituted PK-C system, and approximately 1/3 that obtained with arachidonic acid (AA) or SDS. In contrast to the reconstituted system using PK-C, PMA and Ca++ were neither required nor affected activity. The effect of PS was unexpected, since PK-M does not require phospholipids for enzymatic activity, and likely represents the action of PS on the oxidase itself or on another component in the plasma membrane fraction. Our studies demonstrate for the first time that purified PK-M permits reconstitution of a physiologic phorbol ester response.  相似文献   

14.
Pretreatment of UMR-106 cells (rat osteoblast like osteosarcoma cell line) with the protein kinase C(PK-C) activating phorbol ester, phorbol 12-myristate 13-acetate (PMA) results in a time dependent (1-12h) desensitization of PTH-stimulated cAMP production. Compared to controls, PMA-treated cells showed 50% decrease of PTH-stimulated cAMP production. PK-C inhibitor, H-7 significantly blocked this PMA-induced desensitization. PTH receptor binding, assessed with 125I-[Nle8,Nle18,Tyr34]PTH-(1-34) as radioligand, was decreased by about 20% in PMA-treated cells. H-7 treatment completely restored receptor binding in PMA-treated cells. These data suggest that PK-C might act directly on PTH receptor which is coupling to adenylate cyclase, and induce desensitization.  相似文献   

15.
In certain cell systems, including neonatal vascular smooth muscle (VSM) cells, phorbol esters are growth inhibitory. Here we show that 1,2-dioctanoyl-sn-glycerol (DiC8), when added 2 h after alpha-thrombin, reverses by greater than 95% the induction of DNA synthesis in VSM cells by alpha-thrombin. Sphingosine, a naturally occurring lysosphingolipid inhibitor of protein kinase C, and its synthetic analogues N-acetylsphingosine and C11-sphingosine were used to investigate this phenomenon further. Neither phorbol 12-myristate 13-acetate (PMA;200 ng/ml) nor sphingosine (up to 10 microM) alone had any effect upon basal DNA synthesis in VSM cells. Like DiC8, PMA totally blocked the induction of DNA synthesis by alpha-thrombin. This inhibitory effect of PMA was reversed by sphingosine in a dose-dependent manner with complete reversal at 10 microM. Neither N-acetylsphingosine nor C11-sphingosine exhibited any effect on DNA synthesis in VSM cells. The effect of sphingosine and its analogues on the activity of protein kinase C extracted from VSM cells was measured by histone III-S phosphorylation. Protein kinase C activity was inhibited 50% by 300 microM sphingosine, but less than 15% by similar concentrations of N-acetylsphingosine and C11-sphingosine. To assess the effects of sphingosine and analogues on protein kinase C in intact cells, we examined the effect of the lipids on [3H]phorbol dibutyrate binding. Sphingosine (at greater than 5 microM), but not N-acetylsphingosine or C11-sphingosine, blocked [3H]phorbol dibutyrate binding in a dose- and time-dependent fashion. Thus the mechanism of growth inhibition by DiC8 and PMA in neonatal VSM cells appears to be through activation of protein kinase C by these compounds. Sphingosine reverses this growth inhibition through interference with the binding to protein kinase C of phorbol esters or other activators of this enzyme.  相似文献   

16.
We have examined the effect of phorbol esters and cAMP elevating compounds on tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) secretion. Phorbol esters induce a time- and dose-dependent increase in tPA release from endothelial cells, while forskolin, isobutylmethylxanthine, dibutyryl cAMP, and 8-bromo-cAMP had no significant stimulatory effect on tPA secretion. However, elevation of cAMP simultaneously with phorbol ester treatment potentiated the phorbol ester-induced release of tPA 6 times from 22.2 ng/ml with phorbol myristate acetate (PMA) alone to 122.1 ng/ml (PMA and forskolin). Potentiation was dose-dependent (half-maximal potentiation = 4 microM forskolin), and tPA release was enhanced at all stimulatory concentrations of PMA with no change in the PMA concentrations causing half-maximal or maximum tPA release. The kinetics of release was also similar in PMA versus PMA-forskolin-treated cells. A 4-h delay was observed, enhanced release was transient, and was followed by the onset of a refractory period. In contrast, elevation of cAMP reduced constitutive secretion of PAI-1 by 30-40% and prevented the increase in PAI-1 secretion stimulated by PMA. Elevated cAMP also decreased the rate of PAI-1 deposition into the endothelial substratum. These studies indicate that activation of a cAMP-dependent pathway(s) in coordination with phorbol ester-induced responses plays a central role in modifying the tPA and PAI-1 secretion from endothelial cells, leading to a profibrinolytic state in the endothelial environment.  相似文献   

17.
Regulation of motility in bovine brain endothelial cells   总被引:6,自引:0,他引:6  
Scatter factor (SF) is a fibroblast-derived cytokine which stimulates motility of epithelial and vascular endothelial cells. We used a quantitative assay based on migration of cells from microcarrier beads to flat surfaces to study the regulation of motility in bovine brain endothelial cells (BBEC). Peptide growth factors (EGF, ECGF, basic FGF) did not stimulate migration. Tumor promoting phorbol esters (PMA, PDD) markedly stimulated migration, while inactive phorbol esters (4a-PDD, phorbol-13,20-diacetate) did not affect migration. Both SF- and PMA-stimulated migration were inhibited by 1) TGF-beta; 2) protein kinase inhibitors (e.g., staurosporine, K-252a); 3) activators of the adenylate cyclase signaling pathway (e.g., dibutyryl cyclic AMP, theophylline); 4) cycloheximide; and 5) anti-cytoskeleton agents (e.g., cytochalasin B, colcemid). However, PMA and SF pathways were distinguishable: 1) PMA induced additional migration at saturating SF concentrations; 2) the onset of migration-stimulation was immediate for PMA and delayed for SF; and 3) down-modulation of protein kinase C (PKC) ablated PMA but not SF responsiveness. Assessment of PKC by (3H)-phorbol ester (PDBu) binding and by immunoblot showed 1) scatter factor does not cause significant redistribution or down-modulation of PDBu binding or alpha-PKC; and 2) PDBu mediates redistribution and down-modulation of both binding and alpha-PKC. These findings suggest two pathways for BBEC motility: a PKC-dependent pathway and an SF-stimulated/PKC-independent pathway.  相似文献   

18.
Both the protein kinase C (PK-C) activator, phorbol 12-myristate 13-acetate (PMA), and the cyclic AMP-dependent protein kinase (PK-A) activator, 8-bromo-cyclic AMP (8-BR), have been shown to increase 32P incorporation into glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes. Also, treatment of astrocytes with PMA or 8-BR results in the morphological transformation of flat, polygonal-shaped cells into stellate, process-bearing cells, suggesting the possibility that signals mediated by these two kinase systems converge at the level of protein phosphorylation to elicit similar changes in cell morphology. Therefore, studies were conducted to determine whether treatment with PMA and 8-BR results in the phosphorylation of the same tryptic peptide fragments on GFAP and vimentin in astrocytes. Treatment with PMA increased 32P incorporation into all the peptide fragments that were phosphorylated by 8-BR on both vimentin and GFAP; however, PMA also stimulated phosphorylation of additional fragments of both proteins. The phosphorylation of vimentin and GFAP resulting from PMA or 8-BR treatment was restricted to serine residues in the N-terminal domain of these proteins. Studies were also conducted to compare the two-dimensional tryptic phosphopeptide maps of GFAP and vimentin from intact cells treated with PMA and 8-BR with those produced when the proteins were phosphorylated with purified PK-C or PK-A. PK-C phosphorylated the same fragments of GFAP and vimentin that were phosphorylated by PMA treatment. Additionally, PK-C phosphorylated some tryptic peptide fragments of these proteins that were not observed with PMA treatment in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The immunologic effects of bryostatin (Bryo), a PKC activator with antineoplastic activity, were assessed and compared to PMA. Bryo induced IL-2R expression on CD4+ and CD8+ human T lymphocytes with a dose response comparable to PMA. However, Bryo induced only a marginal proliferative response as compared with the vigorous response induced by PMA. Bryo mediated functional receptor expression because the proliferative response was enhanced by addition of rIL-2. Furthermore, the proliferative response was inhibited by the relatively specific Ca+, phospholipid-dependent protein kinase (PKC) inhibitor, H-7, indicating a role of PKC in Bryo-induced activation. Addition of the calcium ionophore, ionomycin, to Bryo-stimulated lymphocytes resulted in the production and secretion of IL-2 with a concomitant proliferative response. This effect of the calcium ionophore could be inhibited by cyclosporine with identical results obtained in PMA-stimulated cultures. A most intriguing finding was that Bryo could effectively antagonize PMA-induced T cell proliferation. Although this mechanism of inhibition is unclear, a discussion with respect to differential effects on potential intracellular PKC isoforms is provided. These studies indicated that Bryo has potent immunopotentiating properties that share some similar effects of the phorbol ester, PMA, but offers the additional property of modulating other phorbol ester effects on proliferation.  相似文献   

20.
Bryostatin, is an antineoplastic agent with activity in both solid and liquid tumors. When added to tissue culture cells this agent shares a number of similarities with phorbol esters. In this report, we evaluate Bryostatin's effect on human polymorphonuclear leukocytes. Bryostatin stimulates the release of specific granules with a parallel dose response curve to phorbol 12-myristate 13-acetate (PMA), but induces release of superoxide at a significantly slower rate than PMA. Competition experiments demonstrate that Bryostatin, although sharing little structural similarity with PMA, can bind to the PMA receptor. In addition, both Bryostatin and PMA stimulate the phosphorylation of almost identical proteins in intact PMNs. These experiments suggest that Bryostatin may activate PMNs by binding to the PMA receptor, which is currently felt to be the calcium, phospholipid-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号