首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purine deoxynucleoside salvage in Giardia lamblia   总被引:3,自引:0,他引:3  
Giardia lamblia is dependent on the salvage of preformed purines and pyrimidines, including deoxythymidine. Dependence on deoxynucleoside salvage is extremely unusual among eucaryotic cells (Moore, E. C., and Hurlbert, R. B. (1985) Pharmacol & Ther. 27, 167-196). The present study investigates the possibility that giardia lacks ribonucleotide reductase and depends entirely on deoxynucleoside salvage. A ribonucleotide reductase inhibitor, hydroxyurea, at concentrations up to 2 mM had no effect on the growth of giardia. This is 15-20 times the ED50 of hydroxyurea for the protozoans Trypanosoma cruzi, Trypanosoma gambiense, and Leishmania donovani. A lysate of giardia had no detectable ribonucleotide reductase. Although radiolabeled adenine, adenosine, guanine, and guanosine were readily incorporated into RNA by cultured cells, no adenine or adenosine and only trace amounts of guanine and guanosine were detectable in DNA. This is in contrast to deoxynucleosides, where 58% of deoxyadenosine and 10% of deoxyguanosine incorporated into nucleic acid were found in DNA. Phosphorylation of both deoxyadenosine and deoxyguanosine was catalyzed by a cell lysate of giardia when nucleoside kinase co-substrates were included in the assay but not when phosphotransferase co-substrates were present. The absence of detectable ribonucleotide reductase, the failure to incorporate purine nucleobases and nucleosides into DNA to any significant extent, the ready incorporation of deoxynucleosides into DNA, and the demonstration of a purine deoxynucleoside kinase suggest that giardia are dependent on the salvage of exogenous deoxynucleosides.  相似文献   

2.
Leishmania donovani and Leishmania braziliensis grown in culture formed millimolar concentrations of allopurinol ribonucleoside 5'-monophosphate from [6-14C]allopurinol. In addition, allopurinol 1-ribonucleoside, oxipurinol riboside 5'-monophosphate, and three new metabolites of allopurinol, namely, 4-aminopyrazolo(3,4-d)pyrimidine ribonucleoside 5'-monophosphate and the corresponding di- and triphosphates (1-ribosyl 4-aminopyrazolo(3,4-d)pyrimidine 5'-diphosphate and 1-ribosyl 4-aminopyrazolo(3,4-d)pyrimidine 5'-triphosphate) were identified in the parasitic cells. They were formed via a unique amination reaction from 1-ribosyl allopurinol 5'-phosphate, analogous to the conversion of IMP to AMP. [6-14C]Allopurinol was incorporated into RNA of L. donovani in the form of 4-aminopyrazolo(3,4-d)pyrimidine. Adenine reversed the growth inhibition of allopurinol and prevented its metabolism to all of the ribonucleotide metabolites. L. donovani was 2- to 4-fold more active in its metabolism of allopurinol to ribonucleotides than L. braziliensis. 4-Aminopyrazolo(3,4-d)pyrimidine inhibited cell growth and resulted in high intracellular levels of 1-ribosyl allopurinol 5'-phosphate and smaller amounts of the 4-aminopyrazolo(3,4-d)pyrimidine ribonucleotides. The metabolism of allopurinol to 4-aminopyrazolo(3,4-d)pyrimidine ribonucleotides and its resultant cytotoxicity occurs in these parasitic protozoans, but not in mammalian cells.  相似文献   

3.
The ribosomal RNA from several stocks of the genera Leishmania and Trypanosoma were studied by gel electrophoresis, sedimentation on sucrose density gradients and RNA/DNA hybridization experiments. Three major components were observed after electrophoresis in polyacrylamide gels (PAGE-SDS), the relative molecular masses being respectively: X1 = 0.83 megadaltons, X2 = 0.63 megadaltons and X3 = 0.54 megadaltons for Leishmania RNA; and X1 = 0.86 megaldaltons, X2 = 0.78 megadaltons, and X3 = 0.58 megadaltons for Trypanosoma RNA. Depending upon the isolation procedure, a fourth component, X0 = 1.2 megadaltons (26S), became evident. The later component was purified from Leishmania brasiliensis (Y) by centrifugation on a linear 15-30% sucrose density gradient. This component, after heat denaturation and PAGE-SDS, gave rise to two bands coinciding in molecular mass with those of X2 and X3, indicating that these components are part of the large ribosomal subunit whereas X1 belongs to the small one. The above mentioned differences in mobilities of components X1 and X2 between the two genera were no longer observed after electrophoresis in denaturing agarose-formaldehyde gels, suggesting secondary structural differences among these RNA species. Hybridization experiments with L. brasiliensis (Y) DNA showed that both RNA types compete equally well for the ribosomal sites in this DNA, and that L. brasiliensis (Y) rRNA recognizes the ribosomal sites in DNA of Trypanosoma cruzi (EP), thus indicating that no gross changes occurred in their nucleotide sequences during evolution.  相似文献   

4.
In vivo analysis of the RNA interference mechanism in Trypanosoma brucei   总被引:4,自引:0,他引:4  
Flagellate protozoa of the family Trypanosomatidae, which includes various members of the genera Leishmania and Trypanosoma, are model systems for unicellular pathogens to study fundamentally important biological phenomena. Recently, ablation of gene expression by RNA interference (RNAi) has become the method of choice to study gene function in Trypanosoma brucei, an early divergent eukaryote that infects humans and animals. As has been shown in multicellular organisms, the RNAi mechanism in T. brucei involves processing of double-stranded RNA 24- to 26-nt RNAs, termed small interfering RNAs (siRNAs), which guide degradation of the target mRNA. In this article, we describe some of the methods we employ for the analysis of the RNAi mechanism in T. brucei with particular emphasis on detection, cloning, and fractionation of siRNAs and siRNA complexes.  相似文献   

5.
Allopurinol is a hypoxanthine analogue used to treat Leishmania infections that also displays activity against the related parasite Trypanosoma brucei. We have investigated the ease by which resistance to this drug is established in Trypanosoma brucei brucei and correlated this to the mechanisms by which it is accumulated by the parasite. Long-term exposure of procyclic T. b. brucei to 3mM allopurinol did not induce resistance. This appears to be related to the fact that allopurinol was taken up through two distinct nucleobase transporters, H1 and H4, both with high affinity for the drug. The apparent Km for [3H]allopurinol transport by H4 (2.1+/-0.4 microM) was determined by expressing the encoding gene in Saccharomyces cerevisiae. Long-term allopurinol exposure did not change Km (hypoxanthine), Ki (allopurinol), or Vmax values of either H1 or H4 transporters and the cells retained their ability to proliferate with hypoxanthine as sole purine source. This study shows that transport-related resistance to purine antimetabolites is not easily induced in Trypanosoma spp. as long as uptake is mediated by multiple transporters.  相似文献   

6.
The genomic organisation of the gene encoding Leishmania (Leishmania) amazonensis arginase as well as its flanking regions were characterised. The size of the transcribed RNA was determined, allowing us to map the genomic sites signalling for RNA trans-splicing and putative polyadenylation regions. The general organisation was compared with genes encoding other proteins already described in organisms of the Trypanosomatid family. The complete nucleotide sequence of the arginase open reading frame was obtained and the three-dimensional structure of the enzyme was inferred by a computational analysis of the deduced amino acid sequence, based on the established crystal structure described for Rattus norvergicus arginase. The human liver arginase sequence was analysed in the same way and the comparison of the presumed structure of both the Leishmania and human enzymes identified some differences that may be exploited in chemotherapeutic studies.  相似文献   

7.
Current knowledge of the biochemistry of Trypanosoma cruzi has led to the development of new drugs and the understanding of their mode of action. Some trypanocidal drugs such as nifurtimox and benznidazole act through free radical generation during their metabolism. T. cruzi is very susceptible to the cell damage induced by these metabolites because enzymes scavenging free radicals are absent or have very low activities in the parasite. Another potential target is the biosynthetic pathway of glutathione and trypanothione, the low molecular weight thiol found exclusively in trypanosomatids. These thiols scavenge free radicals and participate in the conjugation and detoxication of numerous drugs. Inhibition of this key pathway could render the parasite much more susceptible to the toxic action of drugs such as nifurtimox and benznidazole without affecting the host significantly. Other drugs such as allopurinol and purine analogs inhibit purine transport in T. cruzi, which cannot synthesize purines de novo. Nitroimidazole derivatives such as itraconazole inhibit sterol metabolism. The parasite's respiratory chain is another potential therapeutic target because of its many differences with the host enzyme complexes. The pharmacological modulation of the host's immune response against T. cruzi infection as a possible chemotherapeutic target is discussed. A large set of chemicals of plant origin and a few animal metabolites active against T. cruzi are enumerated and their likely modes of action are briefly discussed.  相似文献   

8.
Biochemical genetic analysis of formycin B action in Leishmania donovani   总被引:1,自引:0,他引:1  
Formycin B is cytotoxic toward Leishmania and is a potential chemotherapeutic agent for leishmaniasis. In order to determine the mechanism of action of formycin B, we have isolated and characterized clonal populations of formycin B-resistant Leishmania donovani. These formycin B-resistant clones are also cross-resistant to formycin A and allopurinol riboside-mediated growth inhibition. Incubation of the formycin B-resistant cells with [3H]formycin B indicates that, unlike wild type cells, the resistant populations cannot accumulate phosphorylated metabolites of exogenous [3H]formycin B. This is due to a defective transport system for formycin B in the resistant cells. However, wild type and mutant cells incorporate [3H]formycin A equally efficiently into [3H]formycin A-containing nucleotides and into RNA. These data suggest that formycin B cytotoxicity in Leishmania is not mediated by its incorporation as the adenosine analog into RNA. A plausible alternative hypothesis is proposed for the mechanism of action of the pyrazolo (4,3-d)pyrimidine C-nucleosides based upon depletion of an essential intracellular metabolite.  相似文献   

9.
Glycolysis occupies a central role in cellular metabolism, and is of particular importance for the catabolic production of ATP in protozoan parasites such as Leishmania and Trypanosoma. In these organisms pyruvate kinase plays a key regulatory role, and is unique in responding to fructose 2,6-bisphosphate as allosteric activator. The determination of the crystal structure of the first eukaryotic pyruvate kinase in the T-state (the inactive or 'tense' conformation of allosteric enzymes) is described. A comparison of the effector sites of the Leishmania and yeast enzymes reveals the structural basis for the different effector specificity. Two loops, comprising residues 443-453 and 480-489, adopt very different conformations in the two enzymes, and Lys-453 and His-480 that are a feature of trypanosomatid enzymes provide probable ligands for the 2-phospho group of the effector molecule. These and other differences offer an opportunity for the design of drugs that would exploit regulatory differences between parasite and host.  相似文献   

10.
11.
Phylogenetic analysis of 18S rRNA sequences from the families Trypanosomatidae and Bodonidae (Eugelenozoa: Kinetoplastida) was conducted using a variety of methods. Unlike previous analyses using unrooted trees and/or smaller numbers of sequences, the analysis did not support monophyly of the genus Trypanosoma, which includes the major human parasites T. cruzi (cause of Chagas' disease) and T. brucei (cause of African sleeping sickness). The section Salivaria of the genus Trypanosoma fell outside a cluster that includes the section Stercoraria of the genus Trypanosoma, along with members of the genera Leishmania, Endotrypanum, Leptomonas, Herpetomonas, Phytomonas, Crithidia, and Blastocrithidia. The phylogenetic analysis also indicated that the genera Bodo, Cryptobia, Leptomonas, Herpetomonas, Crithidia, and Blastocrithidia are polyphyletic. The results suggested that parasitism of vertebrates has probably arisen independently a number of times within the Trypanosomatidae.  相似文献   

12.
To further investigate phylogeny of kinetoplastid protozoa, the sequences of small subunit (18S) ribosomal RNA of nine bodonid isolates and ten isolates of insect trypanosomatids have been determined. The root of the kinetoplastid tree was attached to the branch of Bodo designis and/or Cruzella marina. The suborder Trypanosomatina appeared as a monophyletic group, while the suborder Bodonina was paraphyletic. Among bodonid lineages, parasitic organisms were intermingled with free-living ones, implying multiple transitions to parasitism and supporting the 'vertebrate-first hypothesis'. The tree indicated that the genera Cryptobia and Bodo are artificial taxa. Separation of fish cryptobias and Trypanoplasma borreli as different genera was not supported. In trypanosomatids, the genera Leptomonas and Blastocrithidia were polyphyletic, similar to the genera Herpetomonas and Crithidia and in contrast to the monophyletic genera Trypanosoma and Phytomonas. This analysis has shown that the morphological classification of kinetoplastids does not in general reflect their genetic affinities and needs a revision.  相似文献   

13.
The purine de novo biosynthetic pathway has become a target for chemotherapeutic agents and because of the possible contribution of the salvage of extracellular purines to cellular purine pools an examination of the ability of mouse tumors in vivo to exploit the salvage pathways was undertaken. Our data reveal that circulating radiolabeled preformed purines are rapidly and actively salvaged in both normal liver and in two different types of model tumors. The salvaged purines were found to be distributed between both acid soluble cytoplasmic purines and acid insoluble nucleic acid associated purine species. The ability to salvage adenine, the most abundant circulating purine in C57BL/6 mice, was highest in normal liver with the two different model tumors demonstrating lower specific activities of salvaged acid soluble purines. The amount of radiolabel incorporated into acid insoluble nucleic acid was dependent upon the tumor type. Because of the active salvage observed in these tumors, the mechanism by which de novo purine biosynthesis inhibitors serve as effective chemotherapeutic agents may be more complex than simple biosynthetic inhibition.  相似文献   

14.
Current knowledge of the biochemistry of Trypanosoma cruzi has led to the development of new drugs and the understanding of their mode of action. Some trypanocidal drugs such as nifurtimox and benznidazole act through free radical generation during their metabolism. T. cruzi is very susceptible to the cell damage induced by these metabolites because enzymes scavenging free radicals are absent or have very low activities in the parasite. Another potential target is the biosynthetic pathway of glutathione and trypanothione, the low molecular weight thiol found exclusively in trypanosomatids. These thiols scavenge free radicals and participate in the conjugation and detoxication of numerous drugs. Inhibition of this key pathway could render the parasite much more susceptible to the toxic action of drugs such as nifurtimox and benznidazole without affecting the host significantly. Other drugs such as allopurinol and purine analogs inhibit purine transport in T. cruzi, which cannot synthesize purines de novo. Nitroimidazole derivatives such as itraconazole inhibit sterol metabolism. The parasite's respiratory chain is another potential therapeutic target because of its many differences with the host enzyme complexes. The pharmacological modulation of the host's immune response against T. cruzi infection as a possible chemotherapeutic target is discussed. A large set of chemicals of plant origin and a few animal metabolites active against T. cruzi are enumerated and their likely modes of action are briefly discussed.  相似文献   

15.
The capacity of 54 different pyrazolo(3,4-d) or (4,3-d)pyrimidine derivatives to inhibit Trypanosoma cruzi epimastigote and trypomastigote multiplication, and for some of them its chemotherapeutic activity, was evaluated. Six pyrazolo(3,4-d)pyrimidines showed inhibitory activity against epimastigote forms, 4-aminopyrazolo(3,4-d)pyrimidine being the most active, 5-fold more so than 4-hydroxypyrazolo(3,4-d)-pyrimidine. Neither compound was active against freshly isolated trypomastigotes, suggesting biochemical differences between culture and bloodstream forms of T. cruzi. On both epimastigote and trypomastigote forms, 7-amino-3-beta-D-ribofuranosylpyrazolo-(4,3-d)pyrimidine (FoA) was about 2-fold more active than 7-hydroxy-3-beta-D-ribofuranosylpyrazolo-(4,3-d)pyrimidine (FoB); however, when tested on T. cruzi-infected mice, only FoB exhibited significant chemotherapeutic activity. Previous results suggest that, except for FoB and FoA: (a) pyrazolopyrimidine insensitivity is trypomastigote-specific and (b) drug-insensitivity is lost when trypomastigotes transform into epimastigotes and vice versa.  相似文献   

16.
ABSTRACT. We compared the expression and localization of the mitochondrial and cytoplasmic hsp70 of the protozoans Trypanosoma cruzi, Trypanosoma brucei and Leishmania major. The mitochondrial protein is encoded by multiple mRNA in all species, while the cytoplasmic protein is encoded by a single mRNA. In all three species, the mitochondrial hsp70 is concentrated in the kinetoplast, a submitochondrial structure that houses the unusual DNA (kDNA) that characterizes this group of organisms, while the cytoplasmic protein is distributed throughout the cell. These results suggest that, in all kinetoplastid species, mt-hsp70 has a specific function in kDNA biology, possibly in the processes of kDNA replication, RNA editing or kinetoplast structure.  相似文献   

17.
Ureotelism and ammonotelism in trypanosomatids.   总被引:1,自引:0,他引:1       下载免费PDF全文
According to their genera, trypanosomatids excrete urea, ammonia, or both. Species of Herpetomonas and Trypanosoma are ammonotelic. Species of Leishmania, Leptomonas, Crithidia, and Blastocrithidia can be ureotelic, ammonotelic, or both, depending on growth media composition.  相似文献   

18.
Protein kinases represent promising drug targets for a number of human and animal diseases. The recent completion of the sequenced genomes of three human-infective trypanosomatid protozoa, Leishmania major, Trypanosoma brucei and Trypanosoma cruzi, has allowed the kinome for each parasite to be defined as 179, 156 and 171 eukaryotic protein kinases respectively, that is about one third of the human complement. The analysis revealed that the trypanosomatids lack members of the receptor-linked or cytosolic tyrosine kinase families, but have an abundance of STE and CMGC family protein kinases likely to be involved in regulating cell cycle control, differentiation and response to stress during their complex life-cycles. In this review, we examine the prospects for exploiting differences between parasite and mammalian protein kinases to develop novel anti-parasitic chemotherapeutic agents.  相似文献   

19.
Parasitic protozoan species belonging to the genera Trypanosoma and Leishmania are the etiological agents of several diseases in tropical areas of the world, for which there is an urgent need for effective and affordable treatment. In this regard, we are screening the Brazilian biodiversity, especially its flora and mycota, for natural products that could serve as leads for drug development against these diseases. Trypanothione reductase (TR) is an enzyme involved in the protection of Trypanosoma and Leishmania species against oxidative stress, and is considered to be a validated drug target. The endophytic fungus Alternaria sp. (UFMGCB55) was isolated from the plant Trixis vauthieri DC (Asteraceae), known to contain trypanocidal compounds. The organic extract of the culture of Alternaria sp. was able to inhibit TR by 99%, when tested at 20 microg mL(-1). Fractionation of the extract identified altenusin, a biphenyl derivative with an IC50 value of 4.3+/-0.3 microM in the TR assay. This compound is the first in its class to have shown TR inhibitory activity, opening new perspectives for the design of more effective derivatives that could serve as drug leads for new chemotherapeutic agents to treat trypanosomiasis and leishmaniasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号