首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly repeated DNA (designated satellite IA) was isolated from cultured cells of Muntiacus muntjak vaginalis and its organization analyzed by the use of restriction nucleases and hybridization experiments with cloned DNA-fragments. Several restriction nucleases cleave the satellite IA DNA into a series of fragments, which are multiples of a basic repeat unit of 800 bp. Sequences homologous to the satellite IA DNA were also found in a second highly repetitive DNA component of Muntiacus muntjak vaginalis (satellite IB). Its organization is more complex than the one of satellite IA and does not conform to a simple periodicity of a basic repeat unit. — Hybridization in situ revealed, that both satellites are confined in their entirety to the X-chromosome, where they are located at both arms close to the centromere. No satellite DNA was found at the Y1-chromosome, which is considered to be homologous to the long arm of the X-chromosome. These results have interesting implications for the evolution of the X-chromosome.  相似文献   

2.
Analyzing the satellite DNA in the ant species Monomorium subopacum we found two unrelated families of satellite DNA. Because these satellite DNA families were isolated using the two enzymes HaeIII and EcoRI we called the two families HaeIII and EcoRI family, respectively. The HaeIII family proved to be organized in a 135-bp basic unit repeat, the EcoRI family in a 2.5-kb basic unit repeat. The latter represents perhaps the longest satellite DNA isolated up to now in insects. The HaeIII family apparently comprises about 10% of the total genomic DNA whereas the EcoRI family represents only about 1-2%. A comparative analysis of the two satellite DNA sequences showed no homology between the two families although both sequences possessed long A and T stretches. Eight of the 34 chromosomes showed hybridization with the HaeIII family and hybridization signals are visible in six chromosomes with the EcoRI family. Analysis of the electrophoretic mobility of satellite DNA on non-denaturing polyacrylamide showed that the HaeIII family is only slightly curved. However, the unit of the EcoRI satellite DNA family has curvature, especially the first 1000 bp of the monomeric repeat, in which this DNA is AT rich and has numerous A and T stretches. There are also internal inverted subrepeats in each family. The sequences of satellite DNA families found in Monomorium subopacum are different from the sequences of other satellite DNAs cloned in insects, including other species of ants.  相似文献   

3.
A library of genomic DNA from the brine shrimp, Artemia, has been constructed with the Charon 4A phage vector, utilizing EcoRI passenger fragments. Screening this library with purified Xenopus laevis cloned rDNA genes has resulted in the identification and plaque purification of a recombinant containing a complete Artemia (18 S + 26 S) rDNA repeat unit. A physical map derived from the analysis of restriction endonuclease digests of the repeat unit, which measures 13.9 kilobase pairs, is similar to the map derived from genomic DNA. In common with several other species, the 26 S rRNA gene terminates with a HindIII recognition site.  相似文献   

4.
5.
Nuclear DNA isolated from hypocotyls (H), proliferating callus (PC) and differentiating callus (DC) of Brassica juncea contains a satellite DNA which can be resolved in actinomycin-D/CsCl gradients. The satellite DNA undergoes changes, when an in vitro culture is raised from hypocotyl tissue and forms a higher percentage of the genome in PC and DC than in mature differentiated tissue (hypocotyl). All the three satellite DNAs are GC-rich compared to main band DNAs. Satellite DNA of H has higher Tm and GC content than that of the PC and DC satellites. A 200 bp basic repeat unit from hypocotyl nuclear DNA has been cloned and characterised.  相似文献   

6.
Patchwork structure of a bovine satellite DNA   总被引:25,自引:0,他引:25  
M Pech  R E Streeck  H G Zachau 《Cell》1979,18(3):883-893
According to a previous restriction nuclease analysis, bovine 1.706 satellite DNA (density 1.706 g/cm3 in CsCl) is organized in an unusual structure of superimposed long- and short-range repeats (Streeck and Zachau, 1978). We have now determined the nucleotide sequence of this satellite DNA in both cloned fragments and fragments from the total satellite DNA. Each long-range repeat unit (about 2350 bp) is divided into four segments. Each segment consists of different variants of a basic 23 bp sequence which is itself composed of a dodecanucleotide and a related undecanucleotide. A total of 2400 nucleotides have been sequenced. Detailed analysis of the sequence divergence reveals that both the overall extent of divergence and the frequency of base changes at individual positions of the 23 bp repeats are characteristically different in the various segments. Preferentially methylated sites and a high incidence of symmetry elements are found. In two of the four segments, 22 of 23 bp of the prototype sequence are included in six overlapping elements of dyad symmetry and in a palindrome. A scheme for the evolution of the satellite DNA from a basic dodecanucleotide is proposed which is based on the different degrees of divergence for the various repeats superimposed in this satellite DNA.  相似文献   

7.
We have previously described that Artemia rRNA genes are organized with a basic repeat unit of 16.5 kb [Cruces et al., Biochem. Biophys. Res. Commun. 98 (1981) 404-409]. Here we describe the organization of the DNA coding for rRNA of a different population of this crustacean that has a repeat unit of 12.2 kb. Both types of repeat units have been cloned and the organization of the external spacers studied by restriction analysis. Both external spacers contain repeated sequences, but they are not homologous to each other. Sequences from the external spacer of the 16.5 kb repeat are also found elsewhere in the genome, within sequences not related to rRNA genes.  相似文献   

8.
In the two parasitoid wasps, Diadromus collaris and Eupelmus orientalis, the satellite DNAs were each found to consist wholly or largely of a single family (5%-7% of the genome). Several clones of each family were obtained and sequenced. The repeat unit in each species is characterized by both the repetition of a basic motif and the presence of an inserted sequence. Sequence comparisons with satellite DNA from D. pulchellus and E. vuilleti provide plausible scenarios for the evolution of the satellite DNA in each genus. Palindromes and A-rich tracts in each consensus sequence suggest the formation, in vivo, of hairpin structures and bend centers that may play a role in heterochromatin condensation in insects. The insertions in the repeat units of each species also contain these structural features, suggesting that maintenance of these insertions requires constraints similar to those pertaining to the rest of the satellite- DNA unit.   相似文献   

9.
Isopicnic centrifugation in Cs2SO4-Ag+ gradients at pH 7.0 reveals that the genome of the marine snail Rapana thomasiana Grosse (Gastropoda) contains an AT-rich satellite fraction comprising 5% of the DNA. Restriction enzyme analysis shows that the satellite DNA is composed of a number of related subsets arranged in tandem arrays. They have evolved from the segmental amplification of an 1460 bp long monomer unit with a complex inner organization. Most probably, the present basic repeat originates from an ancestral 400-500 bp long sequence in which some insertions and/or deletions have occurred.  相似文献   

10.
The heterochromatin of the chromosomes of Drosophila gunche consists mainly of a satellite DNA composed of multiple, tandemly arranged copies of a 290 b p basic sequence. Five clones containing one or two copies of the basic unit were sequenced. As expected from CsCl density centrifugation and AT specific staining of mitotic chromosomes the sequence is AT rich. The average nucleotid variability between the cloned sequences is 11.6%. In situ hybridization on the mitotic chromosomes revealed, that this satellite DNA is present in the centromeric regions of all chromosomes but the Y. The nucleotide variability between copies of different tandem clusters seems to be higher than between members of the same cluster. The copy number of the sequence in the haploid genome was estimated to be approximately 80000. The sequence is species specific and is not present in the genome of sibling species D. subobscura and D. madeiren-sis. The evolutionary origin of the satellite DNA and its possible role in species formation is discussed.  相似文献   

11.
We have investigated the organization and complexity of alpha satellite DNA on chromosomes 10 and 12 by restriction endonuclease mapping, in situ hybridization (ISH), and DNA-sequencing methods. Alpha satellite DNA on both chromosomes displays a basic dimeric organization, revealed as a 6- and an 8-mer higher-order repeat (HOR) unit on chromosome 10 and as an 8-mer HOR on chromosome 12. While these HORs show complete chromosome specificity under high-stringency ISH conditions, they recognize an identical set of chromosomes under lower stringencies. At the nucleotide sequence level, both chromosome 10 HORs are 50% identical to the HOR on chromosome 12 and to all other alpha satellite DNA sequences from the in situ cross-hybridizing chromosomes, with the exception of chromosome 6. An 80% identity between chromosome 6- and chromosome 10-derived alphoid sequences was observed. These data suggest that the alphoid DNA on chromosomes 6 and 10 may represent a distinct subclass of the dimeric subfamily. These sequences are proposed to be present, along with the more typical dimeric alpha satellite sequences, on a number of different human chromosomes.  相似文献   

12.
Fine melting profiles of calf satellite I DNA and its fragments obtained after digestion with endoR.EcoRI and endoR.AluI nucleases were investigated. It is shown that the 1360 bp basic repeat unit of calf satellite I DNA contains an about 140 bp long GC rich nucleus. It is localized on the 600 bp restriction fragment obtained after digestion of 1360 bp fragment with endoR.AluI nuclease. The main part of satellite I DNA melts as loops between such GC rich nuclei which strongly influence the melting properties of this satellite. There exist significant differences between the thermal stabilities of fragments containing many nuclei, one nucleus and those in which such nucleus is absent.  相似文献   

13.
A satellite DNA with a buoyant density equal to that of main band DNA in neutral cesium chloride (‘cryptic satellite’) can be isolated from the DNA of mustard (Sinapis alba) nuclei by Ag+/Cs2SO4 density gradient centrifugation. This satellite is cleaved into 172 bp repeat units by HinfI, AluI or HaeIII. The HinfI fragments have been further cleaved by AluI, and seven AluI subfragments have been sequenced. As a result two versions of a basic 172 HinfI repeat have been found, one (A + B) with an additional HinfI site. These two sequences (A + B and C) are the most frequent versions of the basic repeat of mustard satellite DNA. The basic 172 bp unit does not contain subrepeats or palindromic sequences. It is not similar (at a criterion of 15 common bases) with any known satellite sequence. It is not unusually highly methylated in the native state.  相似文献   

14.
The Eco RI fragments from the 2600 bp repeating unit of 1.711b gm/Cm(3) bovine satellite DNA were cloned in pBR322. The structure of the repeat unit was determined and compared to bovine satellite I DNA (rho CsCl = 1.715 gm/cm(3)). All of the DNA in the 1402 bp repeat of satellite I is represented in the sequence of the 2600 bp 1.711b gm/cm(3) repeat. The difference between the two repeats is due to a 1200 bp piece of DNA (INS) residing in the middle of the 1.711b gm/cm(3) repeat. The INS is AT-rich and has some repetitive components; it bears only limited similarity to the structure of eukaryotic transposable elements. We propose that the 1.711b gm/cm(3) satellite DNA arose via the amplification of a 1.715 gm/cm(3) satellite repeat altered by a 1200 bp insertion of DNA.  相似文献   

15.
Artemia is not only valuable for aquaculture but also exhibits unique biological characters. In this study, based on the silkworm Bmdsx gene, a pair of primers was designed. After amplification with these primers, a DNA fragment Apdsx900 from parthenogenesis Artemia genomic DNA was obtained. The following Southern blotting and FISH analysis also proved the fragment was specific for Gahai parthenogenesis Artemia genome. To our knowledge, this is the first report of parthenogenesis genome specific DNA fragments. Apdsxg00 shares little similarity with the silkworm Bmdsx gene. [Acta Zoologica Sinica 50 (3): 470-474, 2004].  相似文献   

16.
17.
Isopicnic centrifugation in Cs2SO4-Ag+ gradients at pH 7.0 reveals that the genome of the marine snail Rapana thomasiana Grosse (Gastropoda) contains an AT-rich satellite fraction comprising 5% of the DNA. Restriction enzyme analysis shows that the satellite DNA is composed of a number of related subsets arranged in tandem arrays. They have evolved from the segmental amplification of an 1460 bp long monomer unit with a complex inner organization. Most probably, the present basic repeat originates from an ancestral 400–500 bp long sequence in which some insertions and/or deletions have occurred.  相似文献   

18.
The major satellites of the nine species of the subgenera Pimelia s. str. and Amblyptera characterised in this paper are composed of longer monomers (500 and 700 bp) than those described previously in 26 Pimelia s. str. taxa (357 bp, a sequence called PIM357). Sequence analysis reveals partial similarity among these satellites and with the PIM357 monomers. The discrepancy between the phylogeny obtained based on three mitochondrial and two nuclear markers and that deduced from satellite DNA (stDNA) sequences suggests that the different Pimelia satellites were already present in a common ancestor forming what has been called a 'satellite DNA library'. Thus, the satellite profiles in the living species result from a random amplification of sequences from that 'library' during diversification of the species. However, species-specific turnover in the sequences has occurred at different rates. They have included abrupt replacements, a gradual divergence and, in other cases, no apparent change in sequence composition over a considerable evolutionary time. The results also suggest a common evolutionary origin of all these Pimelia satellite sequences, involving several rearrangements. We propose that the repeat unit of about 500 bp has originated from the insertion of a DNA fragment of 141 bp into the PIM357 unit. The 705-bp repeats have originated from a 32-bp direct duplication and the insertion of a 141-bp fragment in inverted orientation relative to a basic structure of 533 bp.  相似文献   

19.
20.
Satellite DNA sequences were isolated from the water buffalo (Bubalus bubalis) after digestion with two restriction endonucleases, BamHI and StuI. These satellite DNAs of the water buffalo were classified into two types by sequence analysis: one had an approximately 1,400 bp tandem repeat unit with 79% similarity to the bovine satellite I DNA; the other had an approximately 700 bp tandem repeat unit with 81% similarity to the bovine satellite II DNA. The chromosomal distribution of the satellite DNAs were examined in the river-type and the swamp-type buffaloes with direct R-banding fluorescence in situ hybridization. Both the buffalo satellite DNAs were localized to the centromeric regions of all chromosomes in the two types of buffaloes. The hybridization signals with the buffalo satellite I DNA on the acrocentric autosomes and X chromosome were much stronger than that on the biarmed autosomes and Y chromosome, which corresponded to the distribution of C-band-positive centromeric heterochromatin. This centromere-specific satellite DNA also existed in the interstitial region of the long arm of chromosome 1 of the swamp-type buffalo, which was the junction of the telomere-centromere tandem fusion that divided the karyotype in the two types of buffaloes. The intensity of the hybridization signals with buffalo satellite II DNA was almost the same over all the chromosomes, including the Y chromosome, and no additional hybridization signal was found in noncentromeric sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号