首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract

Leukocyte function associated antigen 1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1) have been shown to be critical for adhesion process and immune response. Modulation or inhibition of the interaction between LFA-1/ICAM-1 interactions can result in therapeutic effects. Our group and others have shown that peptides derived from ICAM- 1 or LFA-1 inhibit adhesion in a homotypic T-cell adhesion assay. It is likely that the peptides derived from ICAM-1 bind to LFA-1 and peptides derived from LFA-1 bind to ICAM- 1 and inhibit the adhesion interaction. However, there are no concrete experimental evidence to show that peptides bind to either LFA-1 or ICAM-1 and inhibit the adhesion. Using NMR, CD and docking studies we have shown that an LFA-1 derived peptide binds to soluble ICAM-1. Docking studies using “autodock” resulted in LFA-1 peptide interacting with the ICAM-1 protein near Glu34. The proposed model based on our experimental data indicated that the LFA-1 peptide interacts with the protein via three intermolecular hydrogen bonds. Hydrophobic interactions also play a role in stabilizing the complex.  相似文献   

2.
Anderson ME  Siahaan TJ 《Peptides》2003,24(3):487-501
This review describes the role of modulation of intracellular adhesion molecule-1 (ICAM-1)/leukocyte function-associated antigen-1 (LFA-1) interaction in controlling autoimmune diseases or inducing immunotolerance. ICAM-1/LFA-1 interaction is essential for T-cell activation as well as for migration of T-cells to target tissues. This interaction also functions, along with Signal-1, as a co-stimulatory signal (Signal-2) for T-cell activation, which is delivered by the T-cell receptors (TCR)-major histocompatibility complex (MHC)-peptide complex. Therefore, blocking ICAM-1/LFA-1 interaction can suppress T-cell activation in autoimmune diseases and organ transplantation. Many types of inhibitors (i.e. antibodies, peptides, small molecules) have been developed to block ICAM-1/LFA-1 interactions, and some of these molecules have reached clinical trials. Peptides derived from ICAM-1 and LFA-1 sequences have been shown to inhibit T-cell adhesion and activation. In addition, these inhibitors have been useful in elucidating the mechanism of ICAM-1/LFA-1 interaction. Besides binding to LFA-1, the ICAM-1 peptide can be internalized by LFA-1 receptors into the cytoplasmic domain of T-cells. Therefore, this ICAM-1 peptide can be utilized to selectively target toxic drugs to T-cells, thus avoiding harmful side effects. Finally, bi-functional inhibitory peptide (BPI), which is made by conjugating the antigenic peptide and an LFA-1 peptide, can alter the T-cell commitment from T-helper-1 (Th1) to T-helper-2 (Th2)-like cells, suggesting that this peptide may have a role in blocking the formation of the "immunological synapse."  相似文献   

3.
T-cell adhesion is mediated by an ICAM-1/LFA-1 interaction; this interaction plays a crucial role in T-cell activation during immune response. LBE peptide, which is derived from the beta-subunit of LFA-1, has been shown to inhibit ICAM-1/LFA-1-mediated T-cell adhesion. In this work, we studied the solution conformations of LBE peptide and its reverse sequence (EBL) by NMR, CD and molecular dynamics simulations. Reverse peptides have been used as controls in biological studies. The effect of reversing the sequence of LBE to EBL peptides on their respective conformations is important in understanding their biological properties in vitro or in vivo. The NMR studies for these peptides were carried out in water and in TFE/water solvent systems. In 40% TFE/water, both peptides exhibited helical conformation. CD studies suggested that the LBE exhibits 30% helical conformation, while the EBL exhibits 20% helical conformation. From the NMR and MD simulation studies, it was evident that the peptides exhibited a stable helical conformation; a stable helical structure was found at Leu6 to Leu15 for LBE and at Gly9 to Leu17 for EBL. The helical conformations of LBE and EBL may be in equilibrium with other possible conformers; the other conformers contain loop and turn structures. Both peptides bind to divalent cations because the LBE is derived from the cation-binding region of the LFA-1. This study shows that reversing the peptide sequence did not alter the secondary structure of the corresponding sequence. Hence, caution must be exercised when using reverse peptides as controls in biological studies. This report will improve our ability to design a better inhibitor of ICAM-1/LFA-1 interaction.  相似文献   

4.
The objective of this work is to study the conformation of cyclic peptide (1), cyclo (1, 12) Pen1-Gly2-Val3-Asp4-Val5-Asp6-Gln7-+ ++Asp8-Gly9-Glu10-Thr11-Cys12, in the presence and absence of calcium. Cyclic peptide 1 is derived from the divalent cation binding sequence of the alpha-subunit of LFA-1. This peptide has been shown to inhibit ICAM-1-LFA-1 mediated T-cell adhesion. In order to understand the structural requirements for this biologically active peptide, its solution structure was studied by nuclear magnetic resonance (NMR), circular dichroism (CD) and molecular dynamics simulations. This cyclic peptide exhibits two types of possible conformations in solution. Structure I is a loop-turn-loop type of structure, which is suitable to bind cations such as EF hand proteins. Structure II is a more extended structure with beta-hairpin bend at Asp4-Val5-Asp6-Gln7. There is evidence that alterations in the conformation of LFA-1 upon binding to divalent cations cause LFA-1 to bind to ICAM-1. To understand this mechanism, the cation-binding properties of the peptide were studied by CD and NMR. CD studies indicated that the peptide binds to calcium and forms a 1 : 1 (peptide: calcium) complex at low calcium concentrations and multiple types of complexes at higher cation concentrations. NMR studies indicated that the conformation of the peptide is not significantly altered upon binding to calcium. The peptide can inhibit T-cell adhesion by directly binding to ICAM-1 or by disrupting the interaction of the alpha and beta-subunits of LFA-1 protein. This study will help us to understand the mechanism(s) of action of this peptide and will improve our ability to design a better inhibitor of T-cell adhesion.  相似文献   

5.
The purpose of this work was to study the conformation of cyclic peptide 1, cyclo(1,12)-Pen1-Ile2-Thr3-Asp4-Gly5-Glu6-Ala7- Thr8-Asp9-Ser10-Gly11-Cys12-OH, derived from the I-domain of the LFA-1 alpha-subunit. We found that cyclic peptide 1 can bind to the D1-domain of ICAM-1 and inhibit ICAM-1/LFA-1-mediated homotypic and heterotypic T-cell adhesion. To understand the bioactive conformation and binding requirements for cyclic peptide 1, its solution structure was studied using NMR, CD, and molecular dynamics simulations. Furthermore, possible binding properties between the cyclic peptide and the D1-domain of ICAM-1 were evaluated using docking experiments. This cyclic peptide has a stable betaII -turn at Asp4- Gly5-Glu6-Ala7 and a betaI-turn at Pen1-Ile2-Thr3-Asp4; a less stable betaV-turn is found at the C-terminal region. The beta-turn at Asp4- Gly5-Glu6-Ala7 was also found in the X-ray structure of the I-domain of LFA-1. Our CD studies showed that the peptide binds to calcium/magnesium and forms a 1:1 (peptide:calcium/magnesium) complex with low cation concentrations and multiple types of complexes with higher cation concentrations. Binding to divalent cations causes a conformational change in peptide 1; this is consistent with our previous study that binding of peptide 1 to ICAM-1 was influenced by divalent cations. Docking studies show the interaction between cyclic peptide 1 and the D1-domain of ICAM-1; it indicates that the Ile2-Thr3-Asp4-Gly4-Glu6-Ala7-Thr8 sequence interacts with the F and C strands of the D1-domain. Finally, these studies will help us design a new generation of selective peptides that may bind better to the D1-domain of ICAM-1.  相似文献   

6.
Previous studies have shown that inflammatory pathologies are mediated by lymphocyte adhesion to endothelium and subsequent transmigration through the endothelial monolayer. Lymphocyte-endothelial adherence is, in part, caused by the leukocyte integrin LFA-1 binding to ICAM-1, its ligand on endothelial cells. Synthetic peptides based on specific amino acid sequences of human ICAM-1 inhibit the adherence of a lymphocytic cell line, Molt-4, to cytokine-stimulated endothelial cells. A total of 26 peptides spanning the extracellular domains of ICAM-1 were evaluated for their inhibitory activity in two cell adhesion assays. Binding of fluorescently labeled Molt-4 cells to TNF-stimulated human umbilical vein endothelial cells was inhibited reproducibly by peptides ICAM1-20, ICAM26-50, ICAM40-64, ICAM132-146, and ICAM345-375. Three overlapping sequences of the peptide ICAM40-64, KELLLPGNNRKVYELSNVQEDSQPM, were synthesized and tested as well, and the sequence KELLLPGNNRKV showed the greatest inhibition. The inhibitory activity of these peptides was confirmed using a second assay, inhibition of aggregation of the Epstein-Barr virus-transformed B-lymphoblast line JY. Polyclonal antibodies were developed in rabbits by immunization with two of the peptides and characterized for their ability to inhibit lymphocyte-endothelial adherence. These studies predict potential sites for interaction of the integrin receptor, LFA-1, with its ligand, ICAM-1. Thus lymphocyte-endothelial interaction, and resulting inflammation, may be partially mediated by the association of ICAM-1 with LFA-1 at the specific molecular locations identified in this study.  相似文献   

7.
In this work, we have designed cyclic peptides (cIBL, cIBR, cIBC, CH4 and CH7) derived from the parent IB peptide (ICAM-1(1-21)) that are inhibitors of ICAM-1/LFA-1-mediated T-cell adhesion to Caco-2 cell monolayers. Cyclic peptide cIBR has the best activity of any of the peptides evaluated. The active ICAM-1 peptides have a common Pro-Arg-Gly sequence that may be important for binding to LFA-1.  相似文献   

8.
Abstract

The purpose of this work was to study the conformation of cyclic peptide 1, cyclo(1,12)- Pen1-Ile2-Thr3-Asp4-Gly5-Glu6-Ala7-Thr8-Asp9-Ser10-Gly11-Cys12-OH, derived from the I-domain of the LFA-1 α-subunit. We found that cyclic peptide 1 can bind to the D1- domain of ICAM-1 and inhibit ICAM-1/LFA-1-mediated homotypic and heterotypic T-cell adhesion. To understand the bioactive conformation and binding requirements for cyclic peptide 1, its solution structure was studied using NMR, CD, and molecular dynamics simulations. Furthermore, possible binding properties between the cyclic peptide and the D1- domain of ICAM-1 were evaluated using docking experiments. This cyclic peptide has a stable βII'-turn at Asp4-Gly5-Glu6-Ala7 and a βI-turn at Pen1-Ile2-Thr3-Asp4; a less stable βV-turn is found at the C-terminal region. The β-turn at Asp4-Gly5-Glu6-Ala7 was also found in the X-ray structure of the I-domain of LFA-1. Our CD studies showed that the peptide binds to calcium/magnesium and forms a 1:1 (peptide:calcium/magnesium) complex with low cation concentrations and multiple types of complexes with higher cation concentrations. Binding to divalent cations causes a conformational change in peptide 1; this is consistent with our previous study that binding of peptide 1 to ICAM-1 was influenced by divalent cations. Docking studies show the interaction between cyclic peptide 1 and the D1- domain of ICAM-1; it indicates that the Ile2-Thr3-Asp4-Gly4-Glu6-Ala7-Thr8 sequence interacts with the F and C strands of the D1-domain. Finally, these studies will help us design a new generation of selective peptides that may bind better to the D1-domain of ICAM-1.  相似文献   

9.
Specific leukocyte/endothelial interactions are critical for immunity and inflammation, yet the molecular details of this interaction interface remain poorly understood. Thus, we investigated, with confocal microscopy, the distribution dynamics of the central adhesion molecules ICAM-1 and LFA-1 in this context. Monolayers of activated HUVECs stained with fluorescent anti-ICAM-1 Fabs or Chinese hamster ovary-K1 cells expressing ICAM-1-green fluorescent protein were allowed to bind LFA-1-bearing monocytes, neutrophils, or K562 LFA-1 transfectants. ICAM-1 was rapidly relocalized to newly formed microvilli-like membrane projections in response to binding LFA-1 on leukocytes. These ICAM-1-enriched projections encircled the leukocytes extending up their sides and clustered LFA-1 underneath into linear tracks. Projections formed independently of VCAM-1/very late Ag 4 interactions, shear, and proactive contributions from the LFA-1-bearing cells. In the ICAM-1-bearing endothelial cells, projections were enriched in actin but not microtubules, required intracellular calcium, and intact microfilament and microtubule cytoskeletons and were independent of Rho/Rho kinase signaling. Disruption of these projections with cytochalasin D, colchicine, or BAPTA-AM had no affect on firm adhesion. These data show that in response to LFA-1 engagement the endothelium proactively forms an ICAM-1-enriched cup-like structure that surrounds adherent leukocytes but is not important for firm adhesion. This finding leaves open a possible role in leukocyte transendothelial migration, which would be consistent with the geometry and kinetics of formation of the cup-like structure.  相似文献   

10.
Short peptides derived from functional proteins have been used in several instances to inhibit activity of the parent proteins. In some cases, stability and efficacy were found to be increased by cyclization of these peptides. Inhibition of interaction of the two cell adhesion counter receptors leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1 is being studied as a method for modulating autoimmune diseases such as rheumatoid arthritis and for facilitating organ transplantation. Here, several 10-amino acid peptides derived from the contact domains of LFA-1 and ICAM-1 were evaluated for their ability to interfere with intercellular adhesion by T cells and to inhibit a more biologic, mixed lymphocyte reaction. Both linear and cyclic forms of the peptides were effective at inhibiting intercellular adhesion. Cyclic forms were effective at inhibiting T cell activation and proliferation in the mixed lymphocyte reaction.  相似文献   

11.
The leukocyte-specific integrin, LFA-1, can enhance T cell activation. However, it is unclear whether the binding of LFA-1 to its ligand, ICAM-1, functions through intercellular adhesion alone, resulting in an augmentation of the TCR signal, or involves an additional LFA-1-mediated cellular signal transduction pathway. We have previously shown that naive CD4+ lymph node T cells, isolated from DO11.10 TCR transgenic mice, are activated by increasing doses of exogenous OVA peptide presented by transfectants expressing both class II and ICAM-1, but not by cells expressing class II alone. To determine whether LFA-1/ICAM-1 interactions were simply enhancing the presentation of low concentrations of specific MHC/peptide complexes generated from exogenously added peptide, we transfected cells with class II that is covalently coupled to peptide, alone or in combination with ICAM-1. These cells express 100-fold more specific class II/peptide complexes than can be loaded onto class II-positive cells at maximum concentrations of exogenous peptide. Despite this high density of TCR ligand, activation of naive CD4+ T cells still requires the coexpression of ICAM-1. LFA-1/ICAM-1 interactions are not required for effective conjugate formation and TCR engagement because presentation of class II/peptide complexes in the absence of ICAM-1 does induce up-regulation of CD25 and CD69. Thus, high numbers of engaged TCR cannot compensate for the lack of LFA-1/ICAM-1 interactions in the activation of naive CD4+ T cells.  相似文献   

12.
Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion.  相似文献   

13.
The interaction between leukocyte function-associated antigen-1(LFA-1) and intercellular adhesion molecule-1 (ICAM-1) plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple ‘in solution’ steady state fluorescence resonance energy transfer (FRET) technique to obtain the dissociation constant (Kd) of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc) as acceptor. From our quantitative FRET analysis, the Kd between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the Kd determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine Kd as well as classifying inhibitors of the LFA-1/ICAM-1 interaction.  相似文献   

14.
ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18)   总被引:13,自引:0,他引:13       下载免费PDF全文
《The Journal of cell biology》1990,111(6):3129-3139
While the leukocyte integrin lymphocyte function-associated antigen (LFA)-1 has been demonstrated to bind intercellular adhesion molecule (ICAM)-1, results with the related Mac-1 molecule have been controversial. We have used multiple cell binding assays, purified Mac- 1 and ICAM-1, and cell lines transfected with Mac-1 and ICAM-1 cDNAs to examine the interaction of ICAM-1 with Mac-1. Stimulated human umbilical vein endothelial cells (HUVECs), which express a high surface density of ICAM-1, bind to immunoaffinity-purified Mac-1 adsorbed to artificial substrates in a manner that is inhibited by mAbs to Mac-1 and ICAM-1. Transfected murine L cells or monkey COS cells expressing human ICAM-1 bind to purified Mac-1 in a specific and dose-dependent manner; the attachment to Mac-1 is more temperature sensitive, lower in avidity, and blocked by a different series of ICAM-1 mAbs when compared to LFA-1. In a reciprocal assay, COS cells cotransfected with the alpha and beta chain cDNAs of Mac-1 or LFA-1 attach to immunoaffinity- purified ICAM-1 substrates; this adhesion is blocked by mAbs to ICAM-1 and Mac-1 or LFA-1. Two color fluorescence cell conjugate experiments show that neutrophils stimulated with fMLP bind to HUVEC stimulated with lipopolysaccharide for 24 h in an ICAM-1-, Mac-1-, and LFA-1- dependent fashion. Because cellular and purified Mac-1 interact with cellular and purified ICAM-1, we conclude that ICAM-1 is a counter receptor for Mac-1 and that this receptor pair is responsible, in part, for the adhesion between stimulated neutrophils and stimulated endothelial cells.  相似文献   

15.
We have previously shown that CD4 ligand binding inhibits LFA-1-dependent adhesion between CD4+ T cells and B cells in a p56(lck)- and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In this work, downstream events associated with adhesion inhibition have been investigated. By using HUT78 T cell lines, CD4 ligands were shown to induce a dissociation of LFA-1 from cytohesin, a cytoplasmic protein known to bind LFA-1 and to enhance the affinity/avidity of LFA-1 for its ligand ICAM-1. A dissociation of PI3-kinase from cytohesin is also observed. In parallel, we have found that CD4 ligand binding induced a redistribution of PI3-kinase and of the tyrosine phosphatase SHP-2 to the membrane and induced a transient formation of protein interactions including PI3-kinase; an adaptor protein, Gab2; SHP-2; and a SH2 domain-containing inositol phosphatase, SHIP. By using antisense oligonucleotides or transfection of transdominant mutants, down-regulation of adhesion was shown to require the Gab2/PI3-kinase association and the expression of SHIP and SHP-2. We therefore propose that CD4 ligands, by inducing these molecular associations, lead to sustained local high levels of D-3 phospholipids and possibly regulate the cytohesin/LFA-1 association.  相似文献   

16.
This review focuses on the structure, function and pathological role of leukocyte function-associated antigen-1 (LFA-1) which is a heterodimeric protein consisting of two subunits. LFA-1 plays a most important role in the immune system including adhesion, extravasation, migration, apoptosis, cytotoxicity, cytokine production, and proliferation of lymphocytes. Therefore, T-cell activation can be suppressed by blocking ICAM-1/LFA-1 interaction in autoimmune diseases and organ transplantation. Many different inhibitors (i.e. antibodies, peptides, small molecules) have been demonstrated to block ICAM-1/LFA-1 interaction, and some of them are promising for medical treatment or have reached clinical trials.  相似文献   

17.
In order to identify a binding site for ligand intercellular adhesion molecule-1 (ICAM-1) on the beta 2 integrin lymphocyte function-associated antigen-1 (LFA-1), protein fragments of LFA-1 were made by in vitro translation of a series of constructs which featured domain-sized deletions starting from the N-terminus of the alpha subunit of LFA-1. Monoclonal antibodies and ICAM-1 were tested for their ability to bind to these protein fragments. Results show that the putative divalent cation binding domains V and VI contain an ICAM-1 binding site. A series of consecutive peptides covering these domains indicated two discontinuous areas as specific contact sites: residues 458-467 in domain V and residues 497-516 in domain VI. A three-dimensional model of these domains of LFA-1 was constructed based on the sequence similarity to known EF hands. The two regions critical for the interaction of LFA-1 with ICAM-1 lie adjacent to each other, the first next to the non-functional EF hand in domain V and the second coinciding with the potential divalent cation binding loop in domain VI. The binding of ICAM-1 with the domain V and VI region in solution was not sensitive to divalent cation chelation. In short, a critical motif for ICAM-1 binding to the alpha subunit of LFA-1 is shared between two regions of domains V and VI.  相似文献   

18.
A mixed phage library containing random peptides from four to eight residues in length flanked by cysteine residues was screened using a recombinant soluble, form of human ICAM-1, which included residues 1–453, (ICAM-11–453). Phage bound to immobilized ICAM-11–453 were eluted by three methods: (1) soluble ICAM-11–453, (2) neutralizing murine monoclonal antibody, (anti-ICAM-1, M174F5B7), (3) acidic conditions. After three rounds of binding and elution, a single, unique ICAM-1 binding phage bearing the peptide EWCEYLGGYLRYCA was isolated; the identical phage was selected with each method of elution. Attempts to isolate phage from non-constrained (i.e., not containing cysteines) libraries did not yield a phage that bound to ICAM-1. Phage displaying EWCEYLGGYLRCYA bound to immobilized ICAM-11–453 and to ICAM-11–185, a recombinant ICAM-1, which contains only the two amino-terminal immunoglobulin domains residing within residues 1–185. This is the region of the ICAM-1 that is bound by LFA-1. The phage did not bind to proteins other than ICAM-1. The phage bound to two ICAM-1 mutants, which contained amino acid substitutions that dramatically decreased or eliminated the binding to LFA-1. Studies were also performed with the corresponding synthetic peptide. The linear form of the synthetic EWCEYLGGYLRCYA peptide was found to inhibit LFA-1 binding to immobilized ICAM-11–453 in a protein-protein binding assay. By contrast, the disulfide, cyclized, form of the peptide was inactive. The EWCEYL portion of the sequence is homologous to the EWPEYL sequence found within rhinovirus coat protein 14, a nonintegrin protein that binds to ICAM-1. Taken together, the results suggests that the EWCEYLGGYLRCYA sequence is capable to binding to immobilized ICAM-1. Phage display appears to represent a new approach for the identification of peptides that interfere with ICAM-1 binding to β2 integrins. © 1996 Wiley-Liss, Inc.  相似文献   

19.
To analyze the binding requirements of LFA-1 for its two most homologous ligands, ICAM-1 and ICAM-3, we compared the effects of various LFA-1 activation regimes and a panel of anti-LFA-1 mAbs in T cell binding assays to ICAM-1 or ICAM-3 coated on plastic. These studies demonstrated that T cell binding to ICAM-3 was inducible both from the exterior of the cell by Mn2+ and from the interior by an agonist of the "inside-out" signaling pathway. T cells bound both ICAM ligands with comparable avidity. A screen of 29 anti-LFA-1 mAbs led to the identification of two mAbs specific for the alpha subunit of LFA-1 which selectively blocked adhesion of T cells to ICAM-3 but not ICAM-1. These two mAbs, YTH81.5 and 122.2A5, exhibited identical blocking properties in a more defined adhesion assay using LFA-1 transfected COS cells binding to immobilized ligand. Blocking was not due to a steric interference between anti-LFA-1 mAbs and N-linked carbohydrate residues present on ICAM-3 but not ICAM-1. The epitopes of mAbs YTH81.5 and 122.2A5 were shown to map to the I domain of the LFA-1 alpha subunit. A third I domain mAb, MEM-83, has been previously reported to uniquely activate LFA-1 to bind ICAM-1 (Landis, R. C., R. I. Bennett, and N. Hogg. 1993. J. Cell Biol. 120:1519-1527). We now show that mAb MEM-83 is not able to stimulate binding of T cells to ICAM-3 over a wide concentration range. Failure to induce ICAM-3 binding by mAb MEM-83 was not due to a blockade of the ICAM-3 binding site on LFA-1. This study has demonstrated that two sets of functionally distinct mAbs recognizing epitopes in the I domain of LFA-1 are able to exert differential effects on the binding of LFA-1 to its ligands ICAM-1, and ICAM-3. These results suggest for the first time that LFA-1 is capable of binding these two highly homologous ligands in a selective manner and that the I domain plays a role in this process.  相似文献   

20.
To identify the intracellular signals which increase the adhesiveness of leukocyte function-associated antigen 1 (LFA-1), we established an assay system for activation-dependent adhesion through LFA-1/intercellular adhesion molecule 1 ICAM-1 using mouse lymphoid cells reconstituted with human LFA-1 and then introduced constitutively active forms of signaling molecules. We found that the phorbol myristate acetate (PMA)-responsive protein kinase C (PKC) isotypes (alpha, betaI, betaII, and delta) or phosphatidylinositol-3-OH kinase (PI 3-kinase) itself activated LFA-1 to bind ICAM-1. H-Ras and Rac activated LFA-1 in a PI 3-kinase-dependent manner, whereas Rho and R-Ras had little effect. Unexpectedly, Rap1 was demonstrated to function as the most potent activator of LFA-1. Distinct from H-Ras and Rac, Rap1 increased the adhesiveness independently of PI 3-kinase, indicating that Rap1 is a novel activation signal for the integrins. Rap1 induced changes in the conformation and affinity of LFA-1 and, interestingly, caused marked LFA-1/ICAM-1-mediated cell aggregation. Furthermore, a dominant negative form of Rap1 (Rap1N17) inhibited T-cell receptor-mediated LFA-1 activation in Jurkat T cells and LFA-1/ICAM-1-dependent cell aggregation upon differentiation of HL-60 cells into macrophages, suggesting that Rap1 is critically involved in physiological processes. These unique functions of Rap1 in controlling cellular adhesion through LFA-1 suggest a pivotal role as an immunological regulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号