首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of cell wall fibres at the surface of isolated leaf protoplasts has been studied by scanning electron microscopy. Fibres are not formed on incubated protoplasts until a lag period has elapsed. This period is about 8 h for leaf protoplasts of Nicotiana tabacum and about 45 h for leaf protoplasts of Antirrhinum majus. In the case of Antirrhinum protoplasts the length of the lag period is dependent on the concentration of osmoticum present during the incubation period. If regenerating protoplasts are briefly treated with dilute cellulase, the newly formed wall is completely digested. Such protoplasts are capable of producing new fibres at the surface within minutes of their return to a nutrient medium. These results are discussed in terms of the likely source of the lag period and its significance in wall regeneration studies.Abbreviations MS culture medium used at full strength - 0.1 MS culture medium used at one tenth full strength  相似文献   

2.
K. A. Fairley  N. A. Walker 《Protoplasma》1989,153(1-2):111-116
Summary Cell wall regeneration around protoplasts from Black Mexican Sweet corn suspension cells has been observed using scanning electron microscopy. A coherent array of cellulose microfibrils can be seen around protoplasts two hours after they have been isolated. This array does not form in the presence of 15 mg/l Congo Red. The frequency and electrical resistance of seals made between patch clamp pipettes and the plasmalemma around corn protoplasts is not significantly affected by the presence or absence of these fibrils (p0=0.75); it remains relatively low. Some single channel records from BMS corn protoplasts are shown.  相似文献   

3.
S. M. Attree  E. Sheffield 《Planta》1985,165(2):151-157
A study was undertaken using gametophytes of the fern Pteridium aquilinum to examine the effects of plasmolysis on the topography of protoplasts. Methods are described whereby the surfaces of non-isolated protoplasts can be observed in the plasmolysed condition using scanning electron microscopy. Plasmolysed gametophytes were also examined in the light microscope using differential interference contrast and ultra-violet fluorescence microscopy after staining with fluorescein diacetate. With scanning electron microscopy, plasmolysed protoplast surfaces appeared smooth with no evidence of wrinkling or infolding of excess membrane. The formation of irregular-shaped protoplasts, protoplasmic threads, subprotoplasts, and protoplasmic networks covering internal wall surfaces all provided evidence for strong wall adhesion of the protoplasm. The availability of membrane for uptake into folds or vesicles is therefore thought to be minimal. Transmission electron microscopy showed some protoplasmic threads to be plasmodesmata, the remainder being cell-wall contact points. Remnants of these threads were occasionally observed on isolated protoplasts in both the light and electron microscopes.  相似文献   

4.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

5.
J. Burgess  P. J. Linstead 《Planta》1979,146(2):203-210
A study has been made of the wall fibrils produced by tobacco protoplasts, using scanning electron microscopy in conjunction with negative staining. It has been shown that the fibres seen in scanning electron microscopy correspond to aggregates of microfibrils. These aggregates are only visible where they are lifted clear of the protoplast surface. Negative staining of fixed protoplasts shows that the aggregation of microfibrils into the fibres visible in scanning electron microscopy is probably produced by air-drying. Gentle disruption of microfibrils produces both random broken fragments and bundles of short pieces of fibrillar material about 60 nm in length. This material is present in undisrupted young walls, but not in undisrupted older walls. The microfibrils in young walls seem much more fragile and liable to breakage than those in older walls. These results are discussed in terms of the interpretation of scanning electron microscope images and the mechanism of cellulose microfibril formation by higher plants.Abbreviations SEM Scanning electron microscopy  相似文献   

6.
Field emission scanning electron microscopy (FESEM) preparation techniques have been successfully adapted for visualization of the internal and external ultrastructure of Mougeotia filaments and protoplasts. FESEM of the innermost layer of cell wall in Mougeotia filaments revealed that microfibrils are deposited parallel to each other in an interconnected mesh and are oriented perpendicular to the direction of elongation. For the first time, the surface of protoplasts at different stages of regeneration has been observed using FESEM. Nascent microfibril deposition occurs between 1 and 2 h after isolation and arrangement of these microfibrils is random for at least 8 h. Observation of the inner surface of the plasma membrane in burst protoplasts showed that microtubules are not strongly attached for at least 3 h after protoplast isolation.  相似文献   

7.
It is known that protoplasts derived from either leaves or suspension cultures of a citrus genotype vary greatly in their regeneration capacities; however, the underlying physiological mechanisms are not well known. In this study, oxidative stress and antioxidant systems during in vitro culture of callus-derived protoplasts and leaf mesophyll-derived protoplasts of Ponkan (Citrus reticulata Blanco) were analyzed to gain insights into observed physiological differences. Morphological observations using light microscopy and scanning microscopy have shown that new cell wall materials appeared within 2–3 days, and the integrate cell walls were regenerated approximately after 6 days of culture of the callus protoplasts, whereas no cell wall formation was observed in the mesophyll protoplasts after culture. During the culture, higher levels of H2O2 and malondialdehyde were detected in the mesophyll protoplasts as compared with the callus ones. On the contrary, the callus protoplasts possessed higher activities of antioxidant enzymes (SOD, POD and CAT) and larger amount of glutathione and ascorbic acid (at one time point) than the mesophyll protoplasts during the culture process. The current data indicate that the mesophyll and callus protoplasts displayed remarkable difference in the degree of oxidative stress and the antioxidant systems, suggesting that high levels of antioxidant activities might play an important role in the regeneration of protoplasts.  相似文献   

8.
元麦叶肉原生质体在MS培养基(附加2,4-D 1mg/L,6-BA 0.25 mg/L)中,进行液体浅层培养。用荧光增白剂(VBL)染色,培养1天出现再生壁。通过扫描电镜观察,发现随着培养时间的延长,原生质体表面逐渐出现短棒状突出物和纤维状结构;培养第5天,原生质体表面覆盖较厚的纤维层,与未脱壁的元麦叶肉细胞表面形态结构相似。用愈创木酚作氢供体测定原生质体胞壁再生过程中过氧化物酶活性,发现随着壁再生率提高,过氧化物酶活性明显下降。用聚丙烯酰胺凝胶电泳分离阳极向过氧化物酶同工酶酶谱,酶带也随着培养时间的延长而减少。由刚分离的原生质体中的8条减少到培养4天的2条,反映胞壁再生和过氧化物酶活性呈负相关。  相似文献   

9.
The optimum conditions for efficient formation and regeneration of Micromonospora rosaria protoplasts have been determined. The state of inoculum culture and stage of growth in a medium containing partially growth-inhibiting concentrations of glycine had significant effects on protoplasting. A high frequency of regeneration was accomplished with a hypertonic regeneration agar medium. A slight difference was found in the optimum culture age for formation and regeneration of protoplasts. Protoplast fusion was carried out using these optimum conditions. The recombinant frequency varied from 0.7 to 5.9% in the intraspecific crosses employing single and multiple auxotrophic markers. Electron microscopy showed stable and intact protoplasts when they were prepared with a hypertonic buffer. However, many protoplasts were shown to be damaged and many membraneous vesicles were observed when prepared in buffer without sucrose. The fusion process of protoplasts of Micromonospora was observed with the aid of electron microscopy.  相似文献   

10.
Microspore derived (MS-)embryogenesis and zygotic embryogenesis of Brassica napus L. cv. Topas were investigated by light and scanning electron microscopy to reveal the expression of polarity during the transition phase from globular to heart and torpedo shape. During the first 5 days of MS-embryo formation, the cell wall of the former microspores remained intact and a globular mass of cells developed within. Pollen walls ruptured after 5 days of culture; embryos proceeded through heart-shape and torpedo-shape stages within 15 days in a way comparable to, but faster than observed during zygotic embryogenesis. Expression of polarity in globular and elongating MS-embryos was analyzed by detection of the distribution of activated calmodulin as well as of free cytosolic calcium by using confocal scanning laser microscopy, and by the detection of starch. Calmodulin was evenly distributed in globular embryos and only exhibited clear polar distribution in elongated embryos. Free cytosolic Ca2+ accumulated in the protoderm of globular embryos and in the central cylinder of torpedo shaped embryos, but never showed polar distribution. Accumulation of starch granules at the root poles of both sexual as well as MS-embryos, however, indicated polar distribution before the transition from globular to heart shape stage. Since the local rupture of the pollen wall of 6-day-old MS-embryos was never preceded by the decrease of starch at that site, it is likely that the rupture of the pollen wall plays an important role in the local activation of cell metabolism and thus in the determination of the polarity axis in MS-embryos.  相似文献   

11.
Protoplasts of Pyricularia oryzae P2, a rice blast mold, were prepared in high yield from the young mycelium of the fungus using lytic enzymes from Bacillus circulans WL 12. The majority of the protoplasts had one nucleus per cell. The protoplasts formed a cell wall and eventually reverted to normal mycelial form in liquid medium. The process of regeneration was studied under phase-contrast and electron microscopes. The protoplast built a very thick wall prior to the protrusion of a germ-tube like hypha. Golgi apparatus-like structures appeared in the early stage of regeneration and disappeared later. Electron-transparent amorphous structures accumulated during regeneration. Lomasomes were observed in the regenerated cell walls.  相似文献   

12.
Protoplasts have been isolated from young vegetative mycelia ofAgaricus bisporus by an enzyme mixture of novozym and chitinase. Protoplasts were released through ruptures in the wall, initially at the apices, but also later from older parts of the hyphae, indicating that they may lack the cell wall. The process of regeneration of these protoplasts has been investigated in liquid medium in which the protoplasts produced short chains of convoluted cells that finally produced a hypha. Electron microscopy has shown that at the start of regeneration two different kinds of fibrils were produced at the external surface of the protoplasts. Later, the thickness of the cell wall increased, and there was a deposit of amorphous material giving rise to a complete new wall.  相似文献   

13.
Summary The growth, cell wall regeneration, and the reversion of the protoplasts ofNadsonia elongata andSchizosaccbaromyces pombe cultivated in nutrient media containing snail enzyme was studied by light and electron microscopy. The protoplasts grew in the presence of snail enzyme and an incomplete cell wall composed of fibrils was formed on their surface. Thus, the presence of snail enzyme inhibited the completion of cell wall structure and, consequently, the reversion of the protoplasts to normal cells. The transfer of these protoplasts to medium free from snail enzyme led first to the completion of the cell wall and then to the reversion of the protoplasts to normal cells. The reported experiments confirmed that the regeneration of the complete cell wall preceded the protoplast reversion.  相似文献   

14.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

15.
Summary Osmotic contraction of protoplasts isolated from cold acclimated leaves ofSecale cereale L. cv. Puma results in the formation of exocytotic extrusions of the plasma membrane. Numerous knobs or polyps were observed on the surface of the protoplasts with scanning electron microscopy. In thin sections, the extrusions were bounded by the plasma membrane with a densely osmiophilic interior. Cross-fracturing of the extrusions revealed aparticulate bodies within, a further indication that the interior of the extrusions was predominantly lipid material. Freeze-fracture of the plasma membrane suggests a possible source of this lipid material. Following osmotic contraction, the particle density on the plasma membrane protoplasmic face (PFp) increased, being reflected in both a substantial increase in paracrystalline arrays and an increase in the particle density in non-crystalline regions. This increase in particle density indicates that lipid material is preferentially lost from the plasma membrane during contraction. The density on the exoplasmic face (EFp) did not change. Together, these findings suggest that during hypertonic contraction of acclimated protoplasts, lipid material is preferentially subducted from the plasma membrane and sequestered into lipid bodies (the osmiophilic regions). The formation of lipid bodies and extrusions was readily reversible. Following osmotic expansion of acclimated protoplasts, the extrusions were retracted back into the plane of the plasma membrane.Department of Agronomy Series Paper no. 1497.  相似文献   

16.
W. Müller  K. Wegmann 《Planta》1978,139(2):155-158
Four independent kinds of observations indicate that the cell wall regenerated by oat (Avena sativa L.) and corn (Zea mays L.) protoplasts in culture is less well developed than that regenerated by tobacco (Nicotiana tabacum L.) protoplasts. Following wall regeneration the cereal protoplasts remained susceptible to osmotic shock upon transfer to water, showed great enlargement, stained poorly with calcofluor white, and maintained a positive internal electrical potential. The development of a negative membrane potential by tobacco protoplasts in culture often occurred simultaneously with the onset of cell division. Since division was observed only in protoplasts which had regenerated good cell walls and had re-established negative membrane potentials it is suggested that culture conditions which favor these two processes should improve protoplast viability.  相似文献   

17.
Summary Freeze-fracture preparations of protoplasts isolated from cell suspension cultures and leaf mesophyll tissue have been examined by transmission electron microscopy. During the first 72 hours of cell wall regeneration, the 8–10nm intramembraneous particles were randomly distributed on both the protoplasmic and extracellular fracture faces of the plasma membranes of protoplasts frozen and fractured in the culture medium without glutaraldehyde fixation or cryoprotection. Incubation of living protoplasts in culture medium containing 20% v/v glycerol as cryoprotectant prior to freezing without fixation caused deformation of the plasma membrane in the form of protrusions accompanied by particle aggregation on the protoplasmic fracture face of the membrane. Intramembraneous particle aggregation was not observed in protoplasts fixed in glutaraldehyde prior to incubation in medium containing glycerol. The aggregation of particles into hexagonal close packed arrays and elongate chains is discussed in relation to a previous report in the literature of the possible involvement of intramembraneous particle complexes in microfibril formation by isolated higher plant protoplasts.  相似文献   

18.
The growth and development of protoplasts of rapeseed (Brassica napus L. cv Line) and carrot (Daucus carota L. cv. Navona) were studied onboard the Space Shuttle‘Discovery’during an 8-day International Microgravity Laboratory [IML-l) mission in January 1992. The Flight experiments were carried out in‘Biorack'. a fully controlled cell biological experimental facility. under microgravity conditions and in a l-g centrifuge. Parallel experiments were performed in a‘Biorack’module on the ground. After retrieval, some samples were subcultured on appropriate media and analysed for callus growth and regeneration to intact plants. The remainder were used for biochemical analysis. Samples fixed on board the Space Shuttle were kept in l% glutaraldehyde fixative at 4°C for 3–7 days for microscopy analysis after retrieval. Protoplasts exposed to microgravity conditions showed a delay in cell wall synthesis. Cells were swollen in appearance and formed cell aggregates with only few cells. Callus were obtained from protoplasts cultured under microgravity (Fogl). on the l-g centrifuge on board the shuttle (Flg), under normal l-g conditions on the ground (G1g) and on a centrifuge on the ground giving 1.4 g (Gl.4g). Regeneration of intact rapeseed plants was obtained from Flg. Glg and G1.4g. However, no plants were regenerated from protoplasts exposed to microgravity (Fog). Biochemical analysis indicated that the microgravity samples (Fog displayed a reduced packed cell volume, an increased concentration of soluble proteins per cell, and a reduced specific activity of peroxidase in the cytoplasm. Morphometric analysis of fixed samples demonstrated that 3-day old protoplasts under microgravity conditions were significantly larger than protoplasts kept on the l-g centrifuge in space. UItrastructural analysis by transmission electron microscopy showed that protoplasts exposed to microgravity conditions for 3 days had larger vacuoles and a slightly reduced starch content compared to Flg cells. Cell aggregates formed under microgravity conditions (Fog) had an average of 2–I cells per aggregate while aggregates formed under Flg had 8–12 cells.  相似文献   

19.
During the process of degradation of the cell wall of the yeast form of Pullularia pullulans by the lytic system of Micromonospora chalcea samples were withdrawn at different times and observed under phase contrast and electron microscope. The progressive lysis of the walls reveals a fibrillar component inside the apparently amorphous wall. Freeze etched preparations of cells during the formation and regeneration of protoplasts show that the cellular membrane is split and this method allows the smooth external face of the membrane and other internal face covered by particles to be seen. The fact that the smooth face of the membrane is only visible during the preparation or the regeneration of protoplasts and very rarely when intact cells are fractured, suggests a strong adherence between cell wall and this external layer of the membrane. During the regeneration which takes place as in most of the yeasts and moulds, a special study of the extension of the cell wall is made and a possible mechanism for this extension of the regenerated cell wall is proposed.  相似文献   

20.
Protoplasts ofMarchantia polymorpha L. were isolated from suspension cells. Regeneration of cell walls on the surface of the protoplasts began within a few hr of cultivation. New cell walls completely covered the surface of the protoplasts within 48 hr. Coumarin and 2,6-dichlorobenzonitrile treatment inhibited the formation of the new cell wall. In the initial stage of cell wall regeneration, endoplasmic reticula developed remarkably close to the plasma membrane in the protoplasts, but no development of Golgi bodies was observed at the same locus. This may suggest that the Golgi bodies do not play an active role in the cell wall formation, at least not in very early periods of cell wall regeneration. The development of endoplasmic reticula and an ultrastructural change of plasma membrane from smooth to rough may be important in the cell wall formation of protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号