首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
BRCA1 is a DNA damage response protein and functions in the nucleus to stimulate DNA repair and at the centrosome to inhibit centrosome overduplication in response to DNA damage. The loss or mutation of BRCA1 causes centrosome amplification and abnormal mitotic spindle assembly in breast cancer cells. The BRCA1-BARD1 heterodimer binds and ubiquitinates γ-tubulin to inhibit centrosome amplification and promote microtubule nucleation; however regulation of BRCA1 targeting and function at the centrosome is poorly understood. Here we show that both N and C termini of BRCA1 are required for its centrosomal localization and that BRCA1 moves to the centrosome independently of BARD1 and γ-tubulin. Mutations in the C-terminal phosphoprotein-binding BRCT domain of BRCA1 prevented localization to centrosomes. Photobleaching experiments identified dynamic (60%) and immobilized (40%) pools of ectopic BRCA1 at the centrosome, and these are regulated by the nuclear export receptor CRM1 (chromosome region maintenance 1) and BARD1. CRM1 mediates nuclear export of BRCA1, and mutation of the export sequence blocked BRCA1 regulation of centrosome amplification in irradiated cells. CRM1 binds to undimerized BRCA1 and is displaced by BARD1. Photobleaching assays implicate CRM1 in driving undimerized BRCA1 to the centrosome and revealed that when BRCA1 subsequently binds to BARD1, it is less well retained at centrosomes, suggesting a mechanism to accelerate BRCA1 release after formation of the active heterodimer. Moreover, Aurora A binding and phosphorylation of BRCA1 enhanced its centrosomal retention and regulation of centrosome amplification. Thus, CRM1, BARD1 and Aurora A promote the targeting and function of BRCA1 at centrosomes.  相似文献   

3.
Richard C. Sicher   《Plant science》2008,174(6):576-582
Responses of soluble amino acids and organic acids to either ambient (36 Pa) or elevated (100 Pa) CO2 treatments were determined using barley primary leaves (Hordeum vulgare L. cv. Brant). Total soluble amino acids were increased 33% by CO2 enrichment 9 days after sowing (DAS), but a decrease relative to the ambient CO2 treatment was observed with increasing leaf age. Marked declines of glutamine and asparagine were observed under CO2 enrichment, both diurnally and with advancing leaf age. Consequently, total soluble amino acids were 59% lower in the elevated compared to the ambient CO2 treatment 17 DAS. It was likely that chlorosis in response to CO2 enrichment negatively impacted soluble amino acid levels in older barley primary leaves. In contrast to the ambient CO2 treatment, glutamine and most other soluble amino acids decreased as much as 60% during the latter half of a 12 h photoperiod in primary leaves of 13-day-old seedlings grown under enhanced CO2. Malate was decreased about 9 percent by CO2 enrichment and citrate and succinate were increased by similar amounts when measured 9 and 13 DAS. Malate accumulation was also decreased about 20% by CO2 enrichment on a diurnal basis. The onset of CO2-dependent leaf yellowing had much less of an effect on organic acids than on soluble amino acids. This above results emphasized the sensitivity of N metabolism to CO2 enrichment in barley. Increased levels of citrate and succinate in response to CO2 enrichment suggested that the tricarboxylic acid cycle was upregulated in barley by CO2 enrichment. In summary, organic and amino acid levels in barley primary leaves were dynamic and were altered by age, diurnally and in response to CO2 enrichment.  相似文献   

4.
A short peptide in complex with the H-2Kb molecule on PyRMA, a polyomavirus transfectant of the mouse lymphoma cell line RMA, was identified as a polyomavirus tumor-specific transplantation antigen. The peptide was obtained by affinity chromatography, acidic extraction, and reverse-phase high-pressure liquid chromatography (HPLC). In one HPLC fraction, a peptide sequence in which 5 of 8 amino acids, GKxGLxxA, corresponded to residues 578 to 585 of polyomavirus large T antigen was identified. In tumor rejection assays, we therefore tested three related synthetic peptides, corresponding to the octapeptide LT 578-585, GKTGLAAA; the nonapeptide LT 578-586, GKTGLAAAL; and the decapeptide LT 578-587, GKTGLAAALI. The octapeptide was found to give the most effective immunization against the outgrowth of the polyomavirus DNA-positive PyRMA tumor. However, none of the three peptides immunized against the original polyoma-virus-negative RMA line.  相似文献   

5.
A review is given of the literature dealing with the most common protected derivatives of 15N- and/or 13C-labelled amino acids of interest in peptide synthesis. The list contains all such Boc-, Z- and Fmoc-amino acids as well as published methyl, ethyl, t-butyl and benzyl esters.  相似文献   

6.
Sequence comparison of the heterocyst-type ferredoxin (FdxH) from Anabaena 7120 and type-I ferredoxins (PetF) from the same organism and other cyanobacteria revealed a group of positively charged residues characteristic for FdxH. Molecular modeling showed that these basic amino acids are clustered on the surface of FdxH. The corresponding domain of PetF contained acidic or nonpolar residues instead. To identify amino acids that are important for interaction with nitrogenase, we generated site-directed mutations in the fdxH gene and assayed the in vitro activity of the resulting recombinant proteins isolated from Escherichia coli. In addition to the point mutants, two chimeric proteins, FdxH : PetF and PetF : FdxH, were constructed containing the 58 N-terminal amino acids of one ferredoxin fused to the 40 C-terminal amino acids of the other. Exchange of lysines 10 and 11 of FdxH for the corresponding residues of PetF (glutamate 10 and alanine 11) resulted in a ferredoxin with greatly decreased affinity to nitrogenase. This indicates an important function of these basic amino acids in interaction with dinitrogenase reductase (NifH) from Anabaena. In addition we checked the reactivity of the recombinant ferredoxins with ferredoxin-NADP+ oxidoreductase (FNR) and photosystem I. The experiments with both the chimeric and point mutated ferredoxins showed that the C-terminal part of this protein determines its activity in NADP+ photoreduction.  相似文献   

7.
8.
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.  相似文献   

9.
The Saccharomyces cerevisiae MID1 gene product (Mid1) is a stretch-activated Ca(2+)-permeable channel component required for Ca2+ influx and the maintenance of viability of cells exposed to the mating pheromone, alpha-factor. It is composed of 548-amino-acid (aa) residues with four hydrophobic segments, H1 (aa 2-22), H2 (aa 92-111), H3 (aa 337-356) and H4 (aa 366-388). It also has 16 putative N-glycosylation sites. In this study, sequentially truncated Mid1 proteins conjugated with GFP were expressed in S. cerevisiae cells. The truncated protein containing the region from H1 to H3 (Mid1(1-360)-GFP) localized normally in the plasma and endoplasmic reticulum (ER) membranes and complemented the low viability and Ca(2+)-uptake activity of the mid1 mutant, whereas Mid1(1-133)-GFP containing the region from H1 to H2 did not. Mid1(Delta3-22)-GFP lacking the H1 region failed to localize in the plasma membrane. Membrane fractionation showed that Mid1(1-22)-GFP containing only H1 localized in the plasma membrane in the presence of alpha-factor, suggesting that H1 is a signal sequence responsible for the alpha-factor-induced Mid1 delivery to the plasma membrane. The region from H1 to H3 is required for the localization of Mid1 in the plasma and ER membranes. Finally, trafficking of Mid1-GFP to the plasma membrane was dependent on the N-glycosylation of Mid1 and the transporter protein Sec12.  相似文献   

10.
The human type 1 (placenta, breast tumors, and prostate tumors) and type 2 (adrenals and gonads) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD1 and 3beta-HSD2) are encoded by two distinct genes that are expressed in a tissue-specific pattern. Our recent studies have shown that His156 contributes to the 14-fold higher affinity that 3beta-HSD1 exhibits for substrate and inhibitor steroids compared with human 3beta-HSD2 containing Tyr156 in the otherwise identical catalytic domain. Our structural model of human 3beta-HSD localizes His156 or Tyr156 in the subunit interface of the enzyme homodimer. The model predicts that Gln105 on one enzyme subunit has a higher probability of interacting with His156 on the other subunit in 3beta-HSD1 than with Tyr156 in 3beta-HSD2. The Q105M mutant of 3beta-HSD1 (Q105M1) shifts the Michaelis-Menten constant (Km) for 3beta-HSD substrate and inhibition constants (Ki) for epostane and trilostane to the much lower affinity profiles measured for wild-type 3beta-HSD2 and H156Y1. However, the Q105M2 mutant retains substrate and inhibitor kinetic profiles similar to those of 3beta-HSD2. Our model also predicts that Gln240 in 3beta-HSD1 and Arg240 in 3beta-HSD2 may be responsible for the 3-fold higher affinity of the type 1 isomerase activity for substrate steroid and cofactors. The Q240R1 mutation increases the isomerase substrate Km by 2.2-fold to a value similar to that of 3beta-HSD2 isomerase and abolishes the allosteric activation of isomerase by NADH. The R240Q2 mutation converts the isomerase substrate, cofactor, and inhibitor kinetic profiles to the 4-14-fold higher affinity profiles of 3beta-HSD1. Thus, key structural reasons for the substantially higher affinities of 3beta-HSD1 for substrates, coenzymes, and inhibitors have been identified. These structure and function relationships can be used in future docking studies to design better inhibitors of the 3beta-HSD1 that may be useful in the treatment of hormone-sensitive cancers and preterm labor.  相似文献   

11.
12.
The inheritance of anthracnose resistance of the common bean ( Phaseolus vulgaris L.) differential cultivar G 2333 to Colletotrichum lindemuthianum races 73 and 89 was studied in crosses with the susceptible cultivar Rudá. The segregation ratios of 15 : 1 in the F2 and 3 : 1 in the backcrosses to Rudá indicate that for each of the races tested there are two independent resistance loci in G 2333. A random amplified polymorphic DNA (RAPD) molecular marker (OPH181200C) linked in resistance to race 73 was identified in a BC3F2:3 population derived from crosses between Rudá and G 2333. A RAPD molecular marker OPAS13950C, previously identified as linked to gene Co-42 , was also amplified in this population. Co-segregation analyses showed that these two markers are located at 5.6 (OPH181200C) and 11.2 (OPAS13950C) cM of the Co-42 gene. These markers were not present in BC1F2:3 plants resistant to race 89 indicating that this population carries a different resistance gene. DNA amplification of BC1F2:3 plants with RAPD molecular marker OPAB450C, previously identified as linked to gene Co-5 , indicated that this gene is present in this population.  相似文献   

13.
Two extracellular humic acids peroxidases called HaP1 and HaP2 were isolated from the Streptomyces sp. strain AM2 and, based on MALDI-TOF MS analysis. The purified enzymes were determined as monomers with molecular masses of 40,351.11 and 25,175.19 Da, respectively. The N-terminal amino acid sequences of HaP1 and HaP2 were identified, and their optimum pH values were determined as 6 and 7.5, respectively. Standard 2,4-dichlorophenol (2,4-DCP) assays showed that both enzymes had maximal activity at 55 °C. HaP2 was stable at 55 °C for more than 24 h and had a half-life of 90 min at 65 °C. Although the catalytic properties of HaP1 and HaP2 were nearly identical, their stabilities and Reinheitzahl (RZ) values were substantially different. Both peroxidases were found to be heme proteins that catalyzed the oxidation of a wide range of substrates in the presence of hydrogen peroxide (H2O2), with HaP2 exhibiting a broader range of substrate specificity. The characterization of peroxidase activity revealed activity against humic acids, guiacol, 2,4-DCP, l-3,4-dihydroxyphenylalanine, and 2,4,5-trichlorophenol as well as other chlorophenols in the presence of H2O2. However, the inhibition of peroxidase activity by the addition of potassium cyanide and sodium azide also indicated the presence of heme components in the tertiary structure of these enzymes.  相似文献   

14.
Abstract: The γ2 subunit of the GABAA receptor (GABAA-R) is alternatively spliced. The long variant (γ2L) contains eight additional amino acids that possess a consensus sequence site for protein phosphorylation. Previous studies have demonstrated that a peptide or fusion protein containing these eight amino acids is a substrate for protein kinase C (PKC), but not cyclic AMP-dependent protein kinase A (PKA)-stimulated phosphorylation. We have examined the ability of PKA, PKC, and Ca2+/calmodulin-dependent protein kinase (CAM kinase II) to phosphorylate a synthetic peptide corresponding to residues 336–351 of the intracellular loop of the γ2L subunit and inclusive of the alternatively spliced phosphorylation consensus sequence site. PKC and CAM kinase II produced significant phosphorylation of this peptide, but PKA was ineffective. The K m values for PKC-and CAM kinase II-stimulated phosphorylation of this peptide were 102 and 35 μM , respectively. Maximal velocities of 678 and 278 nmol of phosphate/min/mg were achieved by PKC and CAM kinase II, respectively. The phosphorylation site in the eight-amino-acid insert of the γ2L subunit has been shown to be necessary for ethanol potentiation of the GABAA-R. Thus, our results suggest that PKC, CAM kinase II, or both may play a role in the effects of ethanol on GABAergic function.  相似文献   

15.
16.
We have investigated the potential for the p16‐cyclin D‐CDK4/6‐retinoblastoma protein pathway to be exploited as a therapeutic target in melanoma. In a cohort of 143 patients with primary invasive melanoma, we used fluorescence in situ hybridization to detect gene copy number variations (CNVs) in CDK4, CCND1, and CDKN2A and immunohistochemistry to determine protein expression. CNVs were common in melanoma, with gain of CDK4 or CCND1 in 37 and 18% of cases, respectively, and hemizygous or homozygous loss of CDKN2A in 56%. Three‐quarters of all patients demonstrated a CNV in at least one of the three genes. The combination of CCND1 gain with either a gain of CDK4 and/or loss of CDKN2A was associated with poorer melanoma‐specific survival. In 47 melanoma cell lines homozygous loss, methylation or mutation of CDKN2A gene or loss of protein (p16INK4A) predicted sensitivity to the CDK4/6 inhibitor PD0332991, while RB1 loss predicted resistance.  相似文献   

17.
We have defined that residues 46 and 54 on a synthetic peptide composed of residues 43–58 of pigeon cytochrome c (p43–58) work as agretopes (sites bound to an MHC molecule) in I-Ab mice. Substitution of amino acid residues on these positions altered the peptide to bind with the other MHC molecules. Furthermore, by substituting the agretopic residues with a variety of amino acids, we could determine the class II binding motif for each MHC molecule. In the present study, immunogenicity of a peptide, 46R50V54A, carrying valine (V) at epitopic (site bound to TCR) position 50, arginine (R) and alanine (A) at agretopic positions 46 and 54 of the p43–58, respectively has been analyzed in B10.PL (H-2u) mice. We found that this peptide bound to two different class II isotypes, I-Au and I-Eu. Arginine at position 46 or alanine at position 54 of the 46R50V54A was shown to be critical for binding to I-Au or I-Eu, respectively. Further, on the basis of this class II binding motif we could prepare potent peptide vaccines against influenza A/Aichi/2/68 virus in B10. PL mice.  相似文献   

18.
19.
Type 2 diabetes is one of the biggest health challenges in the world and WHO projects it to be the 7th leading cause of death in 2030. It is a chronic condition affecting the way our body metabolizes sugar. Insulin resistance is high risk factor marked by expression of Lipoprotein Lipases and Peroxisome Proliferator-Activated Receptor that predisposes to type 2 diabetes. AMP-dependent protein kinase in AMPK signaling pathway is a central sensor of energy status. Deregulation of AMPK signaling leads to inflammation, oxidative stress, and deactivation of autophagy which are implicated in pathogenesis of insulin resistance. SIRT4 protein deactivates AMPK as well as directly inhibits insulin secretion. SIRT4 overexpression leads to dyslipidimeia, decreased fatty acid oxidation, and lipogenesis which are the characteristic features of insulin resistance promoting type 2 diabetes. This makes SIRT4 a novel therapeutic target to control type 2 diabetes. Virtual screening and molecular docking studies were performed to obtain potential ligands. To further optimize the geometry of protein–ligand complexes Quantum Polarized Ligand Docking was performed. Binding Free Energy was calculated for the top three ligand molecules. In view of exploring the stereoelectronic features of the ligand, density functional theory approach was implemented at B3LYP/6-31G* level. 30 ns MD simulation studies of the protein–ligand complexes were done. The present research work proposes ZINC12421989 as potential inhibitor of SIRT4 with docking score (?7.54 kcal/mol), docking energy (?51.34 kcal/mol), binding free energy (?70.21 kcal/mol), and comparatively low energy gap (?0.1786 eV) for HOMO and LUMO indicating reactivity of the lead molecule.  相似文献   

20.
Acute renal failure is a common finding in cocaine abusers. While cocaine metabolism may contribute to its nephrotoxic mechanisms, its pharmacokinetics in kidney cells is hitherto to be clarified. Primary cultures of human proximal tubular cells (HPTCs) provide a well-characterized in vitro model, phenotypically representative of HPTCs in vivo. Thus, the present work describes the first sensitive gas chromatography/ion trap-mass spectrometry (GC/IT-MS) method for measurement of cocaine and its metabolites benzoylecgonine (BE) and norcocaine (NCOC) using a primary culture of HPTCs as cellular matrix, following solid phase extraction (SPE) and derivatization with N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). The application of this methodology also enables the identification of two other cocaine metabolites: ecgonine methyl ester (EME) and anhydroecgonine methyl ester (AEME). The validation of the method was performed through the evaluation of selectivity, linearity, precision and accuracy, limit of detection (LOD), and limit of quantification (LOQ). Its applicability was demonstrated through the quantification of cocaine, BE and NCOC in primary cultured HPTCs after incubation, at physiological conditions, with 1 mM cocaine for 72 h. The developed GC/IT-MS method was found to be linear (r2 > 0.99). The intra-day precision varied between 3.6% and 13.5% and the values of accuracy between 92.7% and 111.9%. The LOD values for cocaine, BE and NCOC were 0.97±0.09, 0.40±0.04 and 20.89±1.81 ng/mL, respectively, and 3.24±0.30, 1.34±0.14 and 69.62±6.05 ng/mL as LOQ values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号