首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 μM of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-α-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 μM), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs.  相似文献   

2.
The ATP-binding cassette transporter A1 (ABCA1) regulates lipid efflux from peripheral cells to High-density lipoprotein. The platelet-derived growth factor (PDGF) is a potent mitogen that enables vascular smooth muscle cells to participate in atherosclerosis. In this report, we showed that PDGF suppressed endogenous expression of ABCA1 in cultured vascular smooth muscle cells. Exposure of CRL-208 cells to PDGF elicited a rapid phosphorylation of a kinase downstream from PI3-K, Akt. The constitutively active form of both p110, a subunit of PI3-K, and Akt inhibited activity of the ABCA1 promoter. In conclusion, PI3-K-Akt pathways participate in PDGF-suppression of ABCA1 expression.  相似文献   

3.
The effects of fractionated oxidized low density lipoproteins (oxidized LDL) on the growth of vascular smooth muscle cells (VSMC) and their relationship to the formation of lysophosphatidylcholine (lyso-PC) as well as the activation of protein kinase C (PKC) were studied. VSMC were isolated from porcine aorta by explant culture. LDL was isolated from porcine blood by sequential ultracentrifugation and oxidized LDL was obtained by incubating LDL with 5 µM CuSO4 at 37° C for various lengths of time. Our results showed that LDL oxidized for 12 h and eluted from fast protein liquid chromatography at 43 min inhibited the growth of VSMC, and that LDL oxidized for longer than 48 h and eluted at 48 min stimulated the growth of VSMC. The formation of lyso-PC in the oxidized LDL correlated well with its stimulatory effect, suggesting that lyso-PC is responsible for the mitogenic effect of oxidized LDL. This stimulatory effect of oxidized LDL was inhibited by staurosporine, a PKC inhibitor. Treatment with oxidized LDL increased the activity of membrane PKC, but it decreased that of cytosolic PKC, suggesting the translocation of PKC from cytosol to the membrane in the presence of oxidized LDL. These results suggested that the oxidized LDL-stimulated VSMC growth was mediated by the formation of lyso-PC and the activation of PKC.  相似文献   

4.
Summary An ultrastructural examination of tissue from the gizzards of chicks just before and just after hatching showed numerous mitotic divisions in the well differentiated and functional smooth muscle. The nuclei in the very elongate, dividing cells were located centrally. The cytoplasm immediately adjacent to the nuclei contained the normal fully differentiated complement of myofilaments. During the active stages of division, after the breakdown of the nuclear membrane, myofilaments were shown to lie between the individual chromosomes. The process of division only occupied a small portion of the long muscle cells; the ultrastructural changes seen appeared similar to those described in other cell types.This work was supported by grants from the National Heart Foundation of Australia and the Australian Research Grants Committee. Part of this study was completed while J.L.S.C. was in receipt of a Queen Elizabeth II Research Fellowship. T. B. was supported by a Commonwealth Postgraduate Award.  相似文献   

5.
We previously reported that p38 mitogen-activated protein (MAP) kinase takes a part in arginine vasopressin (AVP)-induced heat shock protein 27 (HSP27) phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the phosphorylation of HSP27 in these cells. AVP time-dependently induced the phosphorylation of PI3K and Akt. Akt inhibitor, 1l-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, partially suppressed the phosphorylation of HSP27. The AVP-induced HSP27 phosphorylation was attenuated by LY294002, a PI3K inhibitor. The combination of Akt inhibitor and SB203580, a p38 MAP kinase inhibitor, completely suppressed the AVP-induced phosphorylation of HSP27. Furthermore, LY294002 or Akt inhibitor did not affect the AVP-induced phosphorylation of p38 MAP kinase and SB203580 did not affect the phosphorylation of PI3K or Akt. These results suggest that PI3K/Akt plays a part in the AVP-induced phosphorylation of HSP27, maybe independently of p38 MAP kinase, in aortic smooth muscle A10 cells.  相似文献   

6.
Matrix-degrading podosomes in smooth muscle cells   总被引:1,自引:0,他引:1  
Activation of protein kinase C by phorbol esters triggers the remodelling of the actin cytoskeleton and the formation of podosomes in smooth muscle cells (SMCs). Regional control of actin dynamics at specialised microdomains results in a local reduction in contractile forces. The molecular basis for this local inhibition of contractility includes the clustering of cortactin during podosome formation (which precedes the rapid, local dispersion of myosin, tropomyosin and h1 calponin), and the specific recruitment of 110-kDa actin filament-associated protein (AFAP-110) and 190-kDa Rho-specific GTPase-activating protein (p190RhoGAP) to the microdomains. Podosome formation also correlates with cell polarisation, the induction of cell motility, and local degradation of the extracellular matrix. These findings may provide explanations for the complex mechanisms underlying SMC invasion in the course of the development of atherosclerotic lesions and restenosis, and support the concept that matrix degradation and the concomitant engagement of the molecular machinery initiating actin-based cell motility drive tissue invasion in smooth muscle.  相似文献   

7.
The formation of neointimal thickenings in the rat carotid artery after balloon injury was studied by a combination of electron-microscopic and stereological methods. All smooth muscle cells in the normal media had a contractile phenotype, the cytoplasm being dominated by myofilaments. Seven days after endothelial denudation, the smooth muscle cells in the innermost part of the media had assumed a synthetic phenotype by loss of myofilaments and formation of a large endoplasmic reticulum and Golgi complex. These cells moved through fine openings in the internal elastic lamina and gave rise to a growing neointima by proliferation and secretion of extracellular matrix components. Fourteen days after the operation, the neointima had almost reached its final size, and mitoses were no longer noted. Nevertheless, the cells maintained a synthetic phenotype with prominent secretory organelles, although myofilaments had started to become more abundant again. They were surrounded by an extracellular matrix made up of collagen fibrils and coalescing patches of elastin. Thirty-five days after the operation, an endothelial cell layer had reformed and covered most of the luminal vessel surface. In parallel, the smooth muscle cells in the neointima had returned to a contractile phenotype with a cytoplasm dominated by myofilaments. These findings provide a morphological basis for further analysis of the cellular and molecular interactions involved in the formation of neointimal thickenings after endothelial injury, and for the search for agents interfering with this process.  相似文献   

8.
Caldesmon (CaD) is an actin-binding protein that is capable of inhibiting the actomyosin ATPase activity in vitro. CaD has a single gene that is alternatively spliced to generate the smooth muscle-specific form, h-CaD, and a shorter isoform, l-CaD, that is present only in non-muscle cells. The difference between h- and l-CaD is a highly charged repeating sequence, corresponding to a 35 nm-long single helical region that separates the N-terminal domain from the C-terminal domain of h-CaD. To test whether such an elongated h-CaD is essential for smooth muscles to function properly, we have specifically abrogated its expression in the mouse by targeting h-CaD without affecting the expression of l-CaD. After genotyping, we have obtained homozygous knockout mice that indeed lack h-CaD, but nevertheless express varying amounts of l-CaD in a tissue-dependent fashion. The contractility of smooth muscles isolated from the knockout animals is currently under investigation.  相似文献   

9.
Summary A simple 30-min enzyme digestion procedure has been used to release guinea-pig tracheal smooth muscle cells that retain differentiated function in long-term subculture. Primary cell cultures initially consist of numerous epithelial colonies and 70–1000 morphologically differentiated smooth muscle cells per 600 mg (wet weight) tracheal tissue depending on the age of the animal. Both cell types proliferate to form a confluent monolayer within 5–17 days. Pure subcultures of tracheal smooth muscle cells are obtained by limited trypsin digestion of the primary culture. Eighty percent of these subcultured smooth muscle cells retain the ability to contract in response to histamine (10-6 M) and to form reaggregates even after 20 or more passages. Examination of these cells by electron microscopy reveals both biosynthetic and contractile components of smooth muscle. Analysis of this dual phenotype may provide valuable information about the regulation of tracheal smooth muscle cell growth and differentiation.This research was supported in part by a grant from the Foundation for Research in Bronchial Asthma and Related Diseases, Worcester, Massachusetts 01604, USA  相似文献   

10.
Summary Smooth muscle cells were isolated enzymatically from adult human arteries, grown in primary culture in medium containing 10% whole blood serum, and studied by transmission electron microscopy and [3H]thymidine autoradiography. In the intact arterial wall and directly after isolation, each smooth muscle cell had a nucleus with a wide peripheral zone of condensed chromatin and a cytoplasm dominated by myofilament bundles with associated dense bodies. After 1–2 days of culture, the cells had attached to the substrate and started to spread out. At the same time, a characteristic fine-structural modification took place. It included nuclear enlargement, dispersion of the chromatin and formation of large nucleoli. Moreover, myofilament bundles disappeared and an extensive rough endoplasmic reticulum and a large Golgi complex were organized in the cytoplasm. This morphological transformation of the cells was completed in 3–4 days. It was accompanied by initiation of DNA replication and mitosis.The observations demonstrate that adult human arterial smooth muscle cells, when cultivated in vitro, pass through a phenotypic modulation of the same type as arterial smooth muscle cells from experimental animals. This modulation gives the cells morphological and functional properties resembling those of the modified smooth muscle cells found in fibroproliferative lesions of atherosclerosis. Further studies of the regulation of smooth muscle phenotype and growth may provide important clues for a better understanding of the pathogenesis of atherosclerosis.  相似文献   

11.
Gao YJ  Stead S  Lee RM 《Life sciences》2002,70(22):2675-2685
Papaverine is a vasodilator commonly used in the treatment of vasospasmic diseases such as cerebral spasm associated with subarachnoid hemorrhage, and in the prevention of spasm of coronary artery bypass graft by intraluminal and/or extraluminal administration. In this study, we examined whether papaverine in the range of concentrations used clinically causes apoptosis of vascular endothelial and smooth muscle cells. Apoptotic cells were identified by morphological changes and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. In porcine coronary endothelial cells (EC) and rat aortic smooth muscle cells (SMC), papaverine at the concentration of 10(-3) M induced membrane blebbing within 1 hour of incubation. Nuclear condensation and fragmentation were found after 24 hours of treatment. The number of apoptotic cells stained with the TUNEL method was significantly higher in the EC and the SMC after 24 hours of incubation with papaverine at the concentrations of 10(-4) and 10(-3) M than their respective controls. Acidified saline solution (pH 4.8, as control for 10(-3) M papaverine hydrochloride) did not cause apoptosis in these cells. These results showed that papaverine could damage endothelial and smooth muscle cells by inducing changes which are associated with events leading to apoptosis. Since integrity of endothelial cells is critical for normal vascular function, vascular administration of papaverine for clinical use, especially at high concentrations (> or = 10(-4) M), should be re-considered.  相似文献   

12.
Summary The distribution of caldesmon (a calmodulin-binding, F-actin-interacting protein) (Sobue et al. 1982) and of actin was studied in the rat's small intestine by means of light-microscopic immunocytochemistry. Positive immunostaining for caldesmon was seen in smooth muscle cells of the intestinal wall, and of blood vessels, and in the apical portion of the absorptive epithelial cells. The immunoreactivity in goblet cells was difficult to recognize. The positive reaction to immunostaining for actin showed almost the same pattern as that for caldesmon. These results suggest that this calmodulin-binding protein may play an important role in the control of actin-myosin interaction in smooth muscle cells and in non-muscle cells.This study was supported by grants (No. 56370002, 57480092, 58770019) from the Ministry of Education, Science and Culture  相似文献   

13.
Mayr U  Mayr M  Yin X  Begum S  Tarelli E  Wait R  Xu Q 《Proteomics》2005,5(17):4546-4557
In an accompanying study (in this issue, DOI 10.1002/pmic.200402044), we have characterised the proteome of Sca-1(+) progenitor cells, which may function as precursors of vascular smooth muscle cells (SMCs). In the present study, we have analysed and mapped protein expression in aortic SMCs of mice, using 2-DE, MALDI-TOF MS and MS/MS. The 2-D system comprised a non-linear immobilised pH 3-10 gradient in the first dimension (separating proteins with pI values of pH 3-10), and 12%T SDS-PAGE in the second dimension (separating proteins in the range 15,000-150,000 Da). Of the 2400 spots visualised, a subset of 267 protein spots was analysed, with 235 protein spots being identified corresponding to 154 unique proteins. The data presented here are the first map of aortic SMCs and the most extensive analysis of SMC proteins published so far. This valuable tool should provide a basis for comparative studies of protein expression in vascular smooth muscle of transgenic mice and is available on our website hhtp://www.vascular-proteomics.com.  相似文献   

14.
血管平滑肌细胞表型调节机制的研究进展   总被引:13,自引:0,他引:13  
血管平滑肌细胞(VSMC)的增殖和迁移是动脉粥样硬化斑块形成、高血压和血管再狭窄的共同病理特征,而VSMC表型转化是VSMC增殖和迁移的基础,研究VSMC表型调节的分子机制,对上述疾病的防治具有重要意义。本文对VSMC表型转化的影响因素、信号转导途径和转录因子的研究进展作一综述。  相似文献   

15.
Summary Experiments were performed to characterize arginine transport in vascular smooth muscle cells (SMCs) and the effect of angiotensin II (Ang II) on this process. In addition, the role of arginine transport in the cytokineinduced nitric oxide (NO) production was assessed. Arginine transport takes place through Na+-independent (60%) and Na+-dependent pathways (40%). The Na+-independent arginine uptake appears to be mediated by system y+ because of its sensitivity to cationic amino acids such as lysine, ornithine and homoarginine. The transport system was relatively insensitive to acidification of the extracellular medium. By contrast, the Na+-dependent pathway is consistent with system B0,+ since it was inhibited by both cationic and neutral amino acids (i.e., glutamine, phenylalanine, and asparagine), and did not accept Li+ as a Na+ replacement. Treatment of SMCs with 100nM Ang II significantly inhibited the Na+-dependent arginine transport without affecting systems y+, A, and L. This effect occurred in a dose-dependent manner (IC50 of 8.9 ± 0.9nM) and is mediated by the AT-1 receptor subtype because it was blocked by DUP 753, a non-peptide antagonist of this receptor. The inhibition of system B0,+ by Ang II is mediated by protein kinase C (PKC) because it was mimicked by phorbol esters (phorbol 12-myristate 13-acetate) and was inhibited by staurosporine. Ang II also inhibited the IL-1 induced nitrite accumulation by SMCs. This action was also inhibited by staurosporine and reproduced with phorbol esters, suggesting a coupling between arginine uptake and NO synthesis through a PKC-dependent mechanism. However, arginine supplementation in the medium (10mM) failed to prevent the inhibitory action of Ang II on NO synthesis. These findings suggest that although Ang II inhibits concomitantly arginine transport and NO synthesis in SMCs, the reduction of NO synthesis is not associated with alterations in the cellular transport of arginine.Abbreviations Arg arginine - Orn ornithine - HmR homoarginine - Lys lysine - Gln glutamine - Asn asparagine - His histidine - Phe phenylalanine - Leu leucine - Cys Cysteine - Ala alanine - Ser serine - Thr threonine - Glu glutamate - mAIB -methyl-aminoisobutyric acid - BCH bicycloaminoheptane  相似文献   

16.
17.
Abstract Arterial smooth muscle cells grown in primary culture on a substrate of fibronectin in serum-free medium are converted from a contractile to a synthetic phenotype. This process is dependent on integrin signaling and includes a major structural reorganization with loss of myofilaments and formation of a large secretory apparatus. Functionally, the cells lose their contractility and become competent to migrate, secrete extracellular matrix components, and proliferate in response to growth factor stimulation. Here, it is demonstrated that the mitogen-activated protein kinases ERK1/2 play a vital role in the fibronectin-mediated modification of rat aortic smooth muscle cells. Immunoblotting showed that phosphorylated ERK1/2 (p44/p42) were expressed throughout the period when the change in phenotypic properties of the cells took place. Moreover, phosphorylated ERK1/2 accumulated in the nucleus as revealed by immunocytochemical staining. Additional support for an active role of ERK1/2 in the shift in smooth muscle phenotype was obtained by the finding that PD98059, an inhibitor of the upstream kinase MEK1, potently suppressed both the expression of phosphorylated ERK1/2 and the fine structural rebuilding of the cells. In conclusion, the observations point to an important and multifaceted role of ERK1/2 in the regulation of differentiated properties and growth of vascular smooth muscle cells.  相似文献   

18.
Arterial smooth muscle cells grown in primary culture on a substrate of fibronectin in serum-free medium are converted from a contractile to a synthetic phenotype. This process is dependent on integrin signaling and includes a major structural reorganization with loss of myofilaments and formation of a large secretory apparatus. Functionally, the cells lose their contractility and become competent to migrate, secrete extracellular matrix components, and proliferate in response to growth factor stimulation. Here, it is demonstrated that the mitogen-activated protein kinases ERK1/2 play a vital role in the fibronectin-mediated modification of rat aortic smooth muscle cells. Immunoblotting showed that phosphorylated ERK1/2 (p44/p42) were expressed throughout the period when the change in phenotypic properties of the cells took place. Moreover, phosphorylated ERK1/2 accumulated in the nucleus as revealed by immunocytochemical staining. Additional support for an active role of ERK1/2 in the shift in smooth muscle phenotype was obtained by the finding that PD98059, an inhibitor of the upstream kinase MEK1, potently suppressed both the expression of phosphorylated ERK1/2 and the fine structural rebuilding of the cells. In conclusion, the observations point to an important and multifaceted role of ERK1/2 in the regulation of differentiated properties and growth of vascular smooth muscle cells.  相似文献   

19.
We investigated the effects of high concentrations of glucose on plasminogen activator inhibitor-1 (PAI-1) gene expression in cultured rat vascular smooth muscle cells (VSMC). In response to a high glucose concentration (27.5 mM), PAI-1 mRNA increased within 2 h, peaked at 4 h, remained elevated for another 4 h, then decreased to basal levels at 24 h. On the other hand, mannose at the same concentration (22.5 mM mannose plus 5.5 mM glucose) as an osmotic control had little effect on PAI-1 mRNA expression. The expression of PAI-1 mRNA that was also increased by H(2)O(2), angiotensin II, or phorbol myristate acetate, was reversed by the MAPK kinase (MEK) inhibitor PD98059 or the specific protein kinase C (PKC) inhibitor GF109203X. High glucose appeared to activate MAPK and PKC in VSMC judging from Elk-1 and AP-1 activation, respectively. PD98059 inhibited and GF109203X prevented subsequent PAI-1 induction by glucose. These results suggest that glucose at high concentrations induces PAI-1 gene expression in VSMC at least partially via MAPK and PKC activation. This direct effect of glucose might have important implications for the increased plasma concentrations of PAI-1 and possibly atherosclerosis that are associated with diabetes.  相似文献   

20.
目的探讨蛋白激酶C(Protein Kinase C,PKC)在棕榈酸(Palmitic Acid,PA)诱导的骨骼肌细胞胰岛素抵抗(Isulin Resistance,IR)中的作用。方法免疫荧光鉴定原代大鼠骨骼肌细胞,氧化酶-过氧化物酶偶联法(GOD-POD法)检测培养液中葡萄糖浓度。设立对照组、棕榈酸组(PA组)、罗格列酮组(Rosiglitazone,Ros组),每组一分为二,分别加PKC抑制剂白屈莱红碱(Chelerythrine Chloride,CC)与正常培养液作用1h,Western Blot检测PKB及P-Ser473 PKB表达水平。结果 90%以上的细胞-αsarcometric actin免疫荧光染色呈阳性反应,表明培养的细胞为骨骼肌细胞;0.6mmol/L的PA作用24h可诱导骨骼肌细胞产生胰岛素抵抗;PA组与对照组相比P-Ser473 PKB水平显著降低,与本组未加CC相比显著升高。同时,罗格列酮组及本组加CC中P-Ser473PKB水平均高于PA组。结论在PA诱导的骨骼肌细胞IR方面PKC起重要作用,罗格列酮与PKC抑制剂CC均能改善PA引起的IR。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号