首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HEV 239是福建省医学分子病毒学研究中心实验室研制的一种戊型肝炎病毒(HEV)重组颗粒性蛋白疫苗,该文旨在研究HEV239蛋白疫苗在小鼠体内诱导产生特异性免疫应答的情况.将5μg HEV 239蛋白疫苗(239-Pro)、加铝佐剂疫苗(239-Vac)或加弗氏佐剂疫苗(239-CFA)肌肉注射免疫BALB/c鼠3次,第8周检测鼠血清抗HEV抗体及其亚类,同时用ELISPOT方法检测细胞毒性T细胞(CTL)应答.结果显示:239-Vac诱导的抗体滴度与239-CFA相当,高于无佐剂的239-Pro.239-Vac诱导的抗体中,IgG1/IgG2a比值显著高于239-CFA和239-Pro,主要为Th2型应答.除239-CFA之外,239-Vac和239-Pro也可诱导出一定的HEV抗原特异性I型Tc应答.提示:重组抗原HEV 239能诱导良好的抗体应答及一定的Tc1应答.  相似文献   

2.
乙肝病毒DNA疫苗的构建及其诱导小鼠的免疫应答   总被引:6,自引:1,他引:6  
构建含adr亚型HBV表面抗原基因的核酸疫苗 ,考察人白细胞介素II基因及重组白细胞介素II的免疫佐剂作用。用含有人白细胞介素II基因的真核表达质粒及基因重组白细胞介素II蛋白作为佐剂 ,将编码乙型肝炎病毒表面抗原的重组真核表达质粒 pVAX/HBS免疫BALB/C小鼠 (试验组 ) ,同时设置注射质粒pVAX的阴性对照组 ,并分别于第 2 ,4周后加强免疫各 1次。试验组在第 4周时开始有HBsAb产生 ,阴性对照组未测到HbsAb ,试验组和对照组均未检测到HBsAg。乙肝病毒DNA疫苗能引起小鼠特异性体液免疫应答 ,白细胞介素II的真核表达质粒的佐剂作用不明显 ,基因重组白细胞介素II蛋白具有提高小鼠对乙肝病毒核酸疫苗免疫应答水平的佐剂活性。  相似文献   

3.
构建编码HBV包膜-核心蛋白融合基因的DNA疫苗pSC、pSS1S2C和编码HBV包膜蛋白或核心蛋白基因的DNA疫苗pHBs、pHBc,分别肌肉注射免疫BALB/c小鼠,检测小鼠的血清抗体、T细胞增殖和细胞毒性T淋巴细胞反应,比较融合基因DNA疫苗与单基因DNA疫苗诱生免疫应答的强度,发现融合基因DNA疫苗诱生抗体的效率明显不及单基因DNA疫苗,但其能诱导更强、更持久的细胞免疫应答,表明HBV包膜-核心蛋白融合基因DNA疫苗对于治疗慢性乙型肝炎可能比单基因DNA疫苗更为有效.  相似文献   

4.
5.
6.
慢性病毒性肝炎小鼠动物模型的建立及其特征分析   总被引:4,自引:1,他引:4  
慢性病毒型肝炎是一种严重危害人类健康的常见病,多发病,目前尚缺乏理想的实验动物模型来阐明其具体的发病机制,从而使得对其防治的研究受到限制.本研究采用纯化的3型鼠肝炎病毒(MHV-3)经腹腔注入近交系C3H/HeJ小鼠体内,小鼠感染MHV-3后,约63%存活,存活的小鼠一般情况较正常对照组差,肝脏组织呈现持续炎性改变,血清ALT、AST升高而TP、ALB有所下降,与人类慢性病毒性肝炎的发生发展极为相似,可作为研究慢性病毒性肝炎的比较理想动物模型.  相似文献   

7.
慢性病毒型肝炎是一种严重危害人类健康的常见病,多发病,目前尚缺乏理想的实验动物模型来阐明其具体的发病机制,从而使得对其防治的研究受到限制。本研究采用纯化的3型鼠肝炎病毒(MHV-3)经腹腔注入近交系C3H/HeJ小鼠体内,小鼠感染MHV-3后,约63%存活,存活的小鼠一般情况较正常对照组差,肝脏组织呈现持续炎性改变,血清ALT、AST升高而TP、ALB有所下降,与人类慢性病毒性肝炎的发生发展极为相似,可作为研究慢性病毒性肝炎的比较理想动物模型。  相似文献   

8.
9.

Background & Aims

At least eight genotypes of Hepatitis B virus (HBV) have been identified. HBV genotype C is the most common genotype in Japan, although the incidence of HBV genotype A is increasing. The reason underlying the differences in viral multiplication of the HBV genotypes is unclear, especially in vivo. The purpose of this study was to elucidate the differences in HBV load and the persistence of viremia in vivo between genotypes A and C.

Methods

Immunodeficient NOG mice were transfected by hydrodynamic injection with the HBV expression plasmids pHBA1.2 or pHBC1.2, which contain overlength (1.2-mer) copies of the genomes of HBV genotype A or C, respectively.

Results

One day after transfection, the number of HBcAg-positive hepatocytes and serum HBV DNA levels were similar between mice transfected with pHBA1.2 and pHBC1.2. Serum levels of HBV DNA, HBsAg and HBeAg in mice transfected with pHBA1.2 were maintained over 5 months. In contrast, those in mice with pHBC1.2 gradually decreased over time and reached undetectable levels within 3 months after transfection. HBcAg-stained hepatocytes were detected in mice transfected with pHBA1.2, but not pHBC1.2, 5 months post-transfection. Double-staining immunohistochemistry revealed that the number of cleaved caspase3-stained, HBcAg-positive hepatocytes in the pHBC1.2-transfected mice was higher than in the pHBA1.2-transfected mice 3 days post-transfection. Moreover, the plasmid DNA and covalently closed circular DNA levels were decreased in the livers of pHBC1.2-transfected mice. These results suggested that hepatocytes expressing HBV genotype C were eliminated by apoptosis in the absence of immune cells more often than in hepatocytes expressing HBV genotype A.

Conclusions

Immunodeficient mice transfected with HBV genotype A develop persistent viremia, whereas those transfected with HBV genotype C exhibit transient viremia accompanied by apoptosis of HBV-expressing hepatocytes. This differences may affect the clinical courses of patients infected with HBV genotypes A and C.  相似文献   

10.
目的通过水动力法注射乙型肝炎病毒(HBV)共价闭合环状DNA(cccDNA)构建C57BL/6小鼠慢性乙型肝炎病毒感染的模型。方法取29只C57BL/6小鼠,分为实验组、对照组和空白组,应用水动力法分别注射HBV cccDNA、pAAV-HBV1.2及等渗盐水,于注射后收集不同时间点的血清和肝组织。利用放射免疫法检测血清样本中乙型肝炎病毒表面抗原(HBsAg)和乙型肝炎病毒e抗原(HBeAg);荧光定量PCR检测血清和肝组织中HBV DNA拷贝数;免疫组织化学法检测肝组织中HBsAg和乙型肝炎病毒核心抗原(HBc Ag)的表达;苏木精-伊红(HE)染色观察肝组织病理变化;使用SPSS 17.0对数据进行统计学分析。结果实验组HBsAg和HBeAg表达均呈现4个上升-下降曲线:HBsAg峰值分别出现在第3天、第3周、第7周和第9周;HBeAg峰值分别出现在第1天、第1周、第4周和第10周。对照组HBsAg和HBeAg表达分别呈现2个或3个明显的峰:HBsAg峰值分别出现在第3天和第8周;HBeAg峰值分别出现在第1天、第3周和第10周。空白组未检测出HBsAg和HBeAg。实验组HBV DNA拷贝数高于对照组的拷贝数(P<0.01);肝组织中HBV DNA拷贝数高于同期血清中的拷贝数(P<0.01);实验组和对照组的肝组织中均有HBsAg和HBc Ag的表达;实验组与对照组出现肝脏细胞炎症、肝细胞纤维化、肝细胞坏死等病理变化,而空白组正常。结论利用水动力法向C57BL/6小鼠体内转入HBV cccDNA,成功建立了慢性乙型肝炎病毒感染的小鼠模型,与对照组比较,新建立的小鼠乙肝模型具有更高的HBV表达,动物模型为研究乙型肝炎病毒HBV cccDNA的感染及其引起肝损伤的机制奠定了基础。  相似文献   

11.
Non invasive immunologic markers of virus-induced liver disease are unmet needs. We tested the clinical significance of quantitative total and IgM-anti-HBc in well characterized chronic-HBsAg-carriers. Sera (212) were obtained from 111 HBsAg-carriers followed-up for 52 months (28-216) during different phases of chronic-HBV-genotype-D-infection: 10 HBeAg-positive, 25 inactive-carriers (HBV-DNA≤2000IU/ml, ALT<30U/L), 66 HBeAg-negative-CHB-patients and 10 with HDV-super-infection. In 35 patients treated with Peg-IFN±nucleos(t)ide-analogues (NUCs) sera were obtained at baseline, end-of-therapy and week-24-off-therapy and in 22 treated with NUCs (for 60 months, 42-134m) at baseline and end-of-follow-up. HBsAg and IgM-anti-HBc were measured by Architect-assays (Abbott, USA); total-anti-HBc by double-antigen-sandwich-immune-assay (Wantai, China); HBV-DNA by COBAS-TaqMan (Roche, Germany). Total-anti-HBc were detectable in all sera with lower levels in HBsAg-carriers without CHB (immune-tolerant, inactive and HDV-superinfected, median 3.26, range 2.26-4.49 Log10 IU/ml) versus untreated-CHB (median 4.68, range 2.76-5.54 Log10 IU/ml), p<0.0001. IgM-anti-HBc positive using the chronic-hepatitis-cut-off" (0.130-S/CO) were positive in 102 of 212 sera (48.1%). Overall total-anti-HBc and IgM-anti-HBc correlated significantly (p<0.001, r=0.417). Total-anti-HBc declined significantly in CHB patients with response to Peg-IFN (p<0.001) and in NUC-treated patients (p<0.001); the lowest levels (median 2.68, range 2.12-3.08 Log10 IU/ml) were found in long-term responders who cleared HBsAg subsequently. During spontaneous and therapy-induced fluctuations of CHB (remissions and reactivations) total- and IgM-anti-HBc correlated with ALT (p<0.001, r=0.351 and p=0.008, r=0.185 respectively). Total-anti-HBc qualifies as a useful marker of HBV-induced-liver-disease that might help to discriminate major phases of chronic HBV infection and to predict sustained response to antivirals.  相似文献   

12.

Background

Hepatitis B and schistosomiasis are most prevalent in Africa and Asia, and co-infections of both are frequent in these areas. The immunomodulation reported to be induced by schistosome infections might restrict immune control of hepatitis B virus (HBV) leading to more severe viral infection. Vaccination is the most effective measure to control and prevent HBV infection, but there is evidence for a reduced immune response to the vaccine in patients with chronic schistosomiasis japonica.

Methodology/Principal Findings

In this paper, we demonstrate in a mouse model that a chronic Schistosoma japonicum infection can inhibit the immune response to hepatitis B vaccine (HBV vaccine) and lead to lower production of anti-HBs antibodies, interferon-γ (IFN-γ) and interleukin-2 (IL-2). After deworming with Praziquantel (PZQ), the level of anti-HBs antibodies gradually increased and the Th2-biased profile slowly tapered. At 16 weeks after deworming, the levels of anti-HBs antibodies and Th1/Th2 cytokines returned to the normal levels.

Conclusions/Significance

The results suggest that the preexisting Th2-dominated immune profile in the host infected with the parasite may down–regulate levels of anti-HBs antibodies and Th1 cytokines. To improve the efficacy of HBV vaccination in schistosome infected humans it may be valuable to treat them with praziquantel (PZQ) some time prior to HBV vaccination.  相似文献   

13.
探索一种简便、有效的乙型肝炎病毒DNA疫苗免疫方法。将编码绿色荧光蛋白的真核表达质粒pEGFPN1转化到减毒鼠伤寒沙门菌SL7207,灌胃饲服BALB/c小鼠,流式细胞术检测出小鼠脾细胞内表达的绿色荧光蛋白;构建编码HBV包膜大蛋白的DNA疫苗pCIS1S2S,分别以SL7207为载体的口服途径或直接肌肉注射途径免疫BALB/c小鼠,检测小鼠的血清抗体、T细胞增殖和细胞毒性T淋巴细胞反应,结果表明两种免疫途径均能在小鼠体内诱生细胞和体液免疫应答,但口服途径诱导免疫应答的强度明显强于肌肉注射途径。口服携带HBV DNA疫苗的减毒伤寒沙门菌可能代表一种简便、有效的治疗乙型肝炎的新方法。   相似文献   

14.
Hepatitis B virus(HBV) infection remains a global problem, despite the effectiveness of the Hepatitis B vaccine in preventing infection. The resolution of Hepatitis B virus infection has been believed to be attributable to virus-specific immunity. In vivo direct evaluation of anti-HBV immunity in the liver is currently not possible. We have developed a new assay system that detects HBV clearance in the liver after the hydrodynamic transfer of a reporter gene and over-length, linear HBV DNA into hepatocytes, followed by bioluminescence imaging of the reporter gene (Fluc). We employed bioluminescence detection of luciferase expression in HBV-infected hepatocytes to measure the Hepatitis B core antigen (HBcAg)-specific immune responses directed against these infected hepatocytes. Only HBcAg-immunized, but not mock-treated, animals decreased the amounts of luciferase expression, HBsAg and viral DNA from the liver at day 28 after hydrodynamic infection with over-length HBV DNA, indicating that control of luciferase expression correlates with viral clearance from infected hepatocytes.  相似文献   

15.
A study was made of the adjuvant effect of the mouse tumor necrosis factor (mTNF) on DNA immunization against the herpes simplex virus type 1 (HSV1). The HSV1 gD gene (pDNAgD) served as an immunogen; mTNF or its gene cloned in an eukaryotic expression vector (pDNAmTNF) were used to modulate the immune response. Double immunization with pDNAgD led to a sixfold increase in the in vitro T-cell response, a high (1:2000) titer of anti-HSV1 antibodies (including virus-neutralizing antibodies), an increase in IgG2a/IgG1 (suggesting a shift of the immune response to the Th1 type), and no change in CD4/CD8 T-cell ratio. A single injection of mTNF along with inactivated HSV1 allowed a twice higher antibody titer and a fourfold higher T-cell response as compared with immunization with HSV1 alone. Double immunization with both pDNAgD and pDNAmTNF increased the titer of anti-HSV1 antibodies and the T-cell response by factors of 8 and 1.5, respectively, as compared with immunization with pDNAgD alone. However, the protective effect was significantly lower with the two plasmids than with pDNAgD (73 vs. 100%). Thus, DNA immunization with pDNAgD induced both B- and T-cell responses and completely protected mice from a lethal doze of HSV1. The adjuvant properties of mTNF and pDNAmTNF need further investigation.  相似文献   

16.
The elimination of viral covalently closed circular DNA (cccDNA) from the nucleus of infected hepatocytes is an obstacle to achieving sustained viral clearance during antiviral therapy of chronic hepatitis B virus (HBV) infection. The aim of our study was to determine whether treatment with siRNA is able to suppress viral cccDNA amplification using a HBV-transgenic mice model. The experimental results revealed that siRNAs can serve as efficient alternative anti-HBV agents, because they showed better inhibitory effect on viral replication and antigen expression in transgenic mice. More importantly, the siRNA markedly inhibited HBV cccDNA amplification.  相似文献   

17.
Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance.  相似文献   

18.
Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is ∼1.2 days, and the half-life of free infectious IAV is ∼4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is ∼0.5 days, and the average half-life of free infectious virus is ∼1.8 min. During the adaptive phase, model fitting confirms that CD8+ CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity.Current strategies for preventing or decreasing the severity of influenza infection focus on increasing virus-neutralizing antibody titers through vaccination, as experience indicates that this is the best way to prevent morbidity and mortality. Influenza A virus (IAV) undergoes mutations of the genes encoding the hemagglutinin (HA) and neuraminidase (NA) proteins that the neutralizing antibodies are directed against. When the variation is low (antigenic drift), prior vaccination often confers substantial heterologous immunity against a new seasonal IAV strain. In contrast, major genetic changes (antigenic shift) can result in pandemic IAV strains, since for novel strains, the humoral immune response is a primary response, and heterologous immunity is lacking. The emergence of such pandemic strains and the fact that young children are more vulnerable to influenza diseases highlight the need to better understand which viral and immune parameters determine the outcome of infection with viruses novel to the individual.Conventional experimental methods to measure influenza virus immunity have been limited to animal models and studies of adult human peripheral blood leukocytes. The advantages of using animal models include the ability to intensively sample multiple tissues and to utilize genetic and other interventions, such as blocking or depleting antibodies, to dissect the contribution of individual arms of the immune system. However, it is easy to question the relevance of these experiments to humans because of the many important biological differences between human and murine immune systems (29). In both the animal and human systems, we are limited to measuring those parameters and variables for which assays are available, most of them being ex vivo. Parameters such as cell-to-cell spread of the virus in vivo, trafficking of immune cells to the lung, and the in vivo interactions in an intact immune system are much more difficult or impossible to measure with contemporary techniques, particularly in humans. Computational approaches have the potential to offset some of these limitations and provide additional insight into the kinetics of the IAV infection and the associated immune response.Animal models of influenza virus infection in which different arms of the immune system have been suppressed suggest that some components of the adaptive immune system are required for complete viral clearance, often termed a sterilizing immune response. For example, abrogation of the CD4 T-cell response by cytotoxic antibody therapy or through knockout of major histocompatibility complex (MHC) class II slightly delays viral clearance but has little overall effect on the ability to control the infection (21, 54, 55). Elimination of the CD8 T-cell response typically results in delayed viral clearance (12, 20, 47), although animals with intact CD4 T-cell and B-cell compartments are able to control the infection in the absence of CD8 T cells. Presumably, this occurs through antibody-mediated mechanisms (54). Most animals depleted of both CD8 T cells and B cells are not able to clear the virus, which results in death (14, 32, 53). CD4+ T cells certainly contribute to the control of IAV infection, although cytotoxic CD4 T cells are not frequently observed unless cultured in vitro (8, 22, 45). Thus, it is generally accepted that CD8 T cells and/or antibodies are sufficient for timely and complete IAV clearance. Studies that strictly separate the relative roles of CD8 T cells and virus-specific antibodies are less satisfying. Animals depleted of both CD4 and CD8 T cells generally do not control the infection, despite substantial production of anti-IAV IgM antibodies (4, 23, 33, 34). However, adoptive transfer of IAV-specific IgM or IgG antibodies is protective (40, 51), suggesting that the timing and magnitude of the antibody response, i.e., the affinity, avidity, and antibody isotype, are important protective factors.While murine gene knockout or lymphocyte depletion studies are highly informative, they also have a number of limitations. Most importantly, the near-complete ablation of one component of the adaptive immune system often causes profound and unpredictable effects on many other immune components. Although the reported experimental measurements are highly quantitative, they often focus only on a limited number of time points or measurements and do not capture the complexity of the altered, or intact, immune response. In contrast, high-frequency experimental sampling, coupled with mathematical modeling techniques and new statistical approaches, can give insights into the complex biology of IAV infection and test the assumptions inherent in the model. We have learned from other systems, particularly HIV (19, 35, 37, 38, 56), that quantitative analysis of the biology can reveal important factors that are not intuitively obvious. For example, our current estimates for the rates of HIV production and the life span of productively infected cells in vivo were obtained via mathematical modeling (35).Mathematical models have long been used to investigate viral dynamics and immune responses to viral infections, including influenza A virus (3, 5, 7, 15, 16, 31, 36, 48). We recently described a complex differential equation model to simulate and predict the adaptive immune response to IAV infection (24). This model involves 15 equations and 48 parameters, and because of its complexity, many of the parameter values that could not be directly measured were unidentifiable. Thus, it is difficult to estimate all model parameters by fitting experimental data directly to this complex model, although the model can be used to perform simulation predictions (25). This issue can, however, be addressed by reducing the model into smaller submodels with smaller but identifiable sets of parameters, which can be estimated from experimental data. In this paper, we describe such an approach which focuses on IAV infection and the immune response solely within the lung.In the present report, we have fitted a model of primary murine influenza virus infection to data. In naïve subjects, our data suggested that there is no adaptive immune response (e.g., IAV-specific CD8+ T cells or antibodies) detectable in the spleen, lymph nodes, or lung until approximately 5 days after infection; therefore, we have divided the analysis into the following two phases: the initial preadaptive (innate) phase and the later adaptive phase. We use direct experimental data from infection of mice with the H3N2 influenza virus A/X31 strain (2, 24) to obtain key kinetic parameters. The model fitting has revealed that the duration of the infection depends on a small set of immune components, and even large fluctuations in other arms of the immune system or IAV behavior have surprisingly little impact on the outcome of the infection.  相似文献   

19.
乙型肝炎病毒(hepatitis B virus,HBV)极易形成慢性感染,主要机制在于感染者不能产生强有力的细胞免疫应答以清除病毒[1].慢性HBV感染者体内虽然存在HBV抗原特异性T淋巴细胞,但对HBV抗原的反应性较低.研究发现,增强这类T淋巴细胞的反应性,可以促进HBV的清除[2].  相似文献   

20.
Hepatitis B virus (HBV) persistent infection is associated with ineffective immune response for the clearance of virus. Immunomodulators represent an important class of therapeutics, which potentially could be beneficial for the treatment of HBV infection. The particulate yeast-derived glucan (PYDG) has been shown to enhance the innate and adaptive immune responses. We therefore, assessed the efficacy of PYDG in enhancing HBV specific immune responses by employing the hydrodynamic injection-based (HDI) HBV transfection mouse model. Mice were intragatric administered PYDG daily for 9 weeks post pAAV/HBV1.2 hydrodynamic injection. PYDG treatment significantly promoted HBV DNA clearance and production of HBsAb compared to control mice. PYDG treatment resulted in recruitment of macrophages, dendritic cells (DCs) and effector T cells to the liver microenvironment, accompanied by a significantly augmented DCs maturation and HBV-specific IFN-γ and TNF-α production by T cell. In addition, enhanced production of Th1 cytokines in liver tissue interstitial fluid (TIF) was associated with PYDG administration. Live imaging showed the accumulation of PYDG in the mouse liver. Our results demonstrate that PYDG treatment significantly enhances HBV-specific Th1 immune responses, accompanied by clearance of HBV DNA, and therefore holds promise for further development of therapeutics against chronic hepatitis B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号