首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutations in imprinted genes or their imprint control regions (ICRs) produce changes in imprinted gene expression and distinct abnormalities in placental structure, indicating the importance of genomic imprinting to placental development. We have recently shown that a very broad spectrum of placental abnormalities associated with altered imprinted gene expression occurs in the absence of the oocyte–derived DNMT1o cytosine methyltransferase, which normally maintains parent-specific imprinted methylation during preimplantation. The absence of DNMT1o partially reduces inherited imprinted methylation while retaining the genetic integrity of imprinted genes and their ICRs. Using this novel system, we undertook a broad and inclusive approach to identifying key ICRs involved in placental development by correlating loss of imprinted DNA methylation with abnormal placental phenotypes in a mid-gestation window (E12.5-E15.5). To these ends we measured DNA CpG methylation at 15 imprinted gametic differentially methylated domains (gDMDs) that overlap known ICRs using EpiTYPER-mass array technology, and linked these epigenetic measurements to histomorphological defects. Methylation of some imprinted gDMDs, most notably Dlk1, was nearly normal in mid-gestation DNMT1o-deficient placentas, consistent with the notion that cells having lost methylation on these DMDs do not contribute significantly to placental development. Most imprinted gDMDs however showed a wide range of methylation loss among DNMT1o-deficient placentas. Two striking associations were observed. First, loss of DNA methylation at the Peg10 imprinted gDMD associated with decreased embryonic viability and decreased labyrinthine volume. Second, loss of methylation at the Kcnq1 imprinted gDMD was strongly associated with trophoblast giant cell (TGC) expansion. We conclude that the Peg10 and Kcnq1 ICRs are key regulators of mid-gestation placental function.  相似文献   

3.
4.
5.
6.
Ndn is located on chromosome 7C, an imprinted region of the mouse genome. Imprinting of Ndn and adjacent paternally expressed genes is regulated by a regional imprinting control element known as the imprinting center (IC). An IC also controls imprint resetting of target genes in the region of conserved synteny on human chromosome 15q11-q13, which is deleted or rearranged in the neurodevelopmental disorder Prader-Willi syndrome. Epigenetic modifications such as DNA methylation, which occur in gametes and can be stably propagated, are presumed to establish and maintain the imprint in target genes of the IC. While most DNA becomes substantially demethylated by the blastocyst stage, some imprinted genes have regions that escape global demethylation and may maintain the imprint. We have now analyzed the methylation of 39 CpG dinucleotide sequences in the 5' end of Ndn by sodium bisulfite sequencing in gametes and in preimplantation and adult tissues. While sperm DNA is completely unmethylated across this region, oocyte DNA is partially methylated. A distinctive but unstable maternal methylation pattern persists until the morula stage and is lost in the blastocyst stage, where low levels of methylation are present on most DNA strands of either parental origin. The methylation pattern is then substantially remodeled, and fewer than half of maternally derived DNA strands in adult brain resemble the oocyte pattern. We postulate that for Ndn, DNA methylation may initially preserve a gametic imprint during preimplantation development, but other epigenetic events may maintain the imprint later in embryonic development.  相似文献   

7.
Mammalian imprinted genes are clustered in chromosomal domains. Their mono-allelic, parent-of-origin-specific expression is regulated by imprinting control regions (ICRs), which are essential sequence elements marked by DNA methylation on one of the two parental alleles. These methylation “imprints” are established during gametogenesis and, after fertilization, are somatically maintained throughout development. Nonhistone proteins and histone modifications contribute to this epigenetic process. The way ICRs mediate imprinted gene expression differs between domains. At some domains, for instance, ICRs produce long noncoding RNAs that mediate chromatin silencing. Lysine methylation on histone H3 is involved in this developmental process and is particularly important for imprinting in the placenta and brain. Together, the newly discovered chromatin mechanisms provide further clues for addressing imprinting-related pathologies in humans.  相似文献   

8.
The Prader-Willi syndrome (PWS)/Angelman syndrome (AS) region, on human chromosome 15q11-q13, exemplifies coordinate control of imprinted gene expression over a large chromosomal domain. Establishment of the paternal state of the region requires the PWS imprinting center (PWS-IC); establishment of the maternal state requires the AS-IC. Cytosine methylation of the PWS-IC, which occurs during oogenesis in mice, occurs only after fertilization in humans, so this modification cannot be the gametic imprint for the PWS/AS region in humans. Here, we demonstrate that the PWS-IC shows parent-specific complementary patterns of H3 lysine 9 (Lys9) and H3 lysine 4 (Lys4) methylation. H3 Lys9 is methylated on the maternal copy of the PWS-IC, and H3 Lys4 is methylated on the paternal copy. We suggest that H3 Lys9 methylation is a candidate maternal gametic imprint for this region, and we show how changes in chromatin packaging during the life cycle of mammals provide a means of erasing such an imprint in the male germline.  相似文献   

9.
10.
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.  相似文献   

11.
12.
Previously, we discovered that ZFP57 is a maternal-zygotic effect gene, and it maintains DNA methylation genomic imprint at multiple imprinted regions in mouse embryos. Despite these findings, it remains elusive how DNA methyltransferases are targeted to the imprinting control regions to initiate and maintain DNA methylation imprint. To gain insights into these essential processes in genomic imprinting, we examined how ZFP57 maintains genomic DNA methylation imprint in mouse embryonic stem (ES) cells. Here we demonstrate that the loss of ZFP57 in mouse ES cells led to a complete loss of genomic DNA methylation imprint at multiple imprinted regions, similar to its role in mouse embryos. However, reintroduction of ZFP57 into Zfp57-null ES cells did not result in reacquisition of DNA methylation imprint, suggesting that the memory for genomic imprinting had been lost or altered in Zfp57-null ES cells in culture. Interestingly, ZFP57 and DNA methyltransferases could form complexes in the presence of KAP1/TRIM28/TIF1β when co-expressed in COS cells. We also found that the wild-type exogenous ZFP57 but not the mutant ZFP57 lacking the KRAB box that interacts with its co-factor KAP1/TRIM28/TIF1β could substitute for the endogenous ZFP57 in maintaining the DNA methylation imprint in ES cells. These results suggest that ZFP57 may recruit DNA methyltransferases to its target regions to maintain DNA methylation imprint, and this interaction is likely facilitated by KAP1/TRIM28/TIF1β.  相似文献   

13.
Imprinted genes play important roles in the regulation of growth and development, and several have been shown to influence behavior. Their allele-specific expression depends on inheritance from either the mother or the father, and is regulated by "imprinting control regions" (ICRs). ICRs are controlled by DNA methylation, which is present on one of the two parental alleles only. These allelic methylation marks are established in either the female or the male germline, following the erasure of preexisting DNA methylation in the primordial germ cells. After fertilization, the allelic DNA methylation at ICRs is maintained in all somatic cells of the developing embryo. This epigenetic "life cycle" of imprinting (germline erasure, germline establishment, and somatic maintenance) can be disrupted in several human diseases, including Beckwith-Wiedemann syndrome (BWS), Prader-Willi syndrome (PWS), Angelman syndrome and Hydatidiform mole. In the neurodevelopmental Rett syndrome, the way the ICR mediates imprinted expression is perturbed. Recent studies indicate that assisted reproduction technologies (ART) can sometimes affect the epigenetic cycle of imprinting as well, and that this gives rise to imprinting disease syndromes. This finding warrants careful monitoring of the epigenetic effects, and absolute risks, of currently used and novel reproduction technologies.  相似文献   

14.
15.
Although aberrant DNA methylation within imprinted domains has been reported in a variety of neoplastic diseases, it remains largely uncharacterized in the context of carcinogenesis. In this study, we induced T-cell lymphoma in mice by employing a breeding scheme involving mouse strains, LSL-KrasG12D and MMTV-Cre. We then systematically surveyed imprinted domains for DNA methylation changes during tumor progression using combined bisulfite restriction analysis and NGS-based bisulfite sequencing. We detected hyper- or hypo-methylation at the imprinting control regions (ICRs) of the Dlk1, Peg10, Peg3, Grb10, and Gnas domains. These DNA methylation changes at ICRs were more prevalent and consistent than those observed at the promoter regions of well-known tumor suppressors, such as Mgmt, Fhit, and Mlh1. Thus, the changes observed at these imprinted domains are the outcome of isolated incidents affecting DNA methylation settings. Within imprinted domains, DNA methylation changes tend to be restricted to ICRs as nearby somatic differentially methylated regions and promoter regions experience no change. Furthermore, detailed analyses revealed that small cis-regulatory elements within ICRs tend to be resistant to DNA methylation changes, suggesting potential protection by unknown trans-factors. Overall, this study demonstrates that DNA methylation changes at ICRs are dynamic during carcinogenesis and advocates that detection of aberrant DNA methylation at ICRs may serve as a biomarker to enhance diagnostic procedures.  相似文献   

16.
Genomic imprinting is a common epigenetic phenomenon in mammals. Dysregulation of genomic imprinting has been implicated in a variety of human diseases. ZFP57 is a master regulator in genomic imprinting. Loss of ZFP57 causes loss of DNA methylation imprint at multiple imprinted regions in mouse embryos, as well as in embryonic stem (ES) cells. Similarly, mutations in human ZFP57 result in hypomethylation at many imprinted regions and are associated with transient neonatal diabetes and other human diseases. Mouse and human Zfp57 genes are located in the same syntenic block. However, mouse and human ZFP57 proteins only display about 50% sequence identity with different number of zinc fingers. It is not clear if they share similar mechanisms in maintaining genomic imprinting. Here we report that mouse and human ZFP57 proteins are functionally interchangeable. Expression of exogenous wild-type human ZFP57 could maintain DNA methylation imprint at three imprinted regions in mouse ES cells in the absence of endogenous mouse ZFP57. However, mutant human ZFP57 proteins containing the mutations found in human patients could not substitute for endogenous mouse ZFP57 in maintaining genomic imprinting in ES cells. Like mouse ZFP57, human ZFP57 and its mutant proteins could bind to mouse KAP1, the universal cofactor for KRAB zinc finger proteins, in mouse ES cells. Thus, we conclude that mouse and human ZFP57 are orthologs despite relatively low sequence identity and mouse ES cell system that we had established before is a valuable system for functional analyses of wild-type and mutant human ZFP57 proteins.  相似文献   

17.
18.
19.
20.
The maintenance of H3K9 and DNA methylation at imprinting control regions (ICRs) during early embryogenesis is key to the regulation of imprinted genes. Here, we reveal that ZFP57, its cofactor KAP1, and associated effectors bind selectively to the H3K9me3-bearing, DNA-methylated allele of ICRs in ES cells. KAP1 deletion induces a loss of heterochromatin marks at ICRs, whereas deleting ZFP57 or DNMTs leads to ICR DNA demethylation. Accordingly, we find that ZFP57 and KAP1 associated with DNMTs and hemimethylated DNA-binding NP95. Finally, we identify the methylated TGCCGC hexanucleotide as the motif that is recognized by ZFP57 in all ICRs and in several tens of additional loci, several of which are at least ZFP57-dependently methylated in ES cells. These results significantly advance our understanding of imprinting and suggest a general mechanism for the protection of specific loci against the wave of DNA demethylation that affects the mammalian genome during early embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号