共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Erin L. Boland Crystal M. Van Dyken Rachel M. Duckett Andrew J. McCluskey Gregory M.K. Poon 《Journal of molecular biology》2014
The catalytic moiety of Pseudomonas exotoxin A (domain III or PE3) inhibits protein synthesis by ADP-ribosylation of eukaryotic elongation factor 2. PE3 is widely used as a cytocidal payload in receptor-targeted protein toxin conjugates. We have designed and characterized catalytically inactive fragments of PE3 that are capable of structural complementation. We dissected PE3 at an extended loop and fused each fragment to one subunit of a heterospecific coiled coil. In vitro ADP-ribosylation and protein translation assays demonstrate that the resulting fusions—supplied exogenously as genetic elements or purified protein fragments—had no significant catalytic activity or effect on protein synthesis individually but, in combination, catalyzed the ADP-ribosylation of eukaryotic elongation factor 2 and inhibited protein synthesis. Although complementing PE3 fragments are catalytically less efficient than intact PE3 in cell-free systems, co-expression in live cells transfected with transgenes encoding the toxin fusions inhibits protein synthesis and causes cell death comparably as intact PE3. Complementation of split PE3 offers a direct extension of the immunotoxin approach to generate bispecific agents that may be useful to target complex phenotypes. 相似文献
3.
Improvements in the mosquitocidal activity of Bacillus thuringiensis Cry19Aa were achieved by protein engineering of putative surface loop residues in domain II through rational design. The improvement of Aedes toxicity in Cry19Aa was 42,000-fold and did not affect its toxicity against Anopheles or Culex. 相似文献
4.
Juan Rico Ester Pardo Margarita Orejas 《Applied and environmental microbiology》2010,76(19):6449-6454
Linalool production was evaluated in different Saccharomyces cerevisiae strains expressing the Clarkia breweri linalool synthase gene (LIS). The wine strain T73 was shown to produce higher levels of linalool than conventional laboratory strains (i.e., almost three times the amount). The performance of this strain was further enhanced by manipulating the endogenous mevalonate (MVA) pathway: deregulated overexpression of the rate-limiting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) doubled linalool production. In a haploid laboratory strain, engineering of this key step also improved linalool yield.Monoterpenes are a class of isoprenoids of increasing industrial and clinical interest usually produced by plants. They are used as aromatic additives in the food and cosmetics industries and are also important components in wine aroma. Moreover, certain monoterpenes display antimicrobial, antiparasitic, and antiviral properties as well as a plethora of promising health benefits (for recent reviews, see references 2, 7, 15, 28, and 30 and references cited therein). To date, many studies have focused on plant metabolic engineering of monoterpene production (for selected reviews, see references 1, 14, 19, 29, and 35 and references cited therein), and few studies have been carried out on microorganisms (9, 21, 22, 34, 38). Efficient microbial production of these metabolites could provide an alternative to the current methods of chemical synthesis or extraction from natural sources. In this regard, a considerable number of studies have shown the utility of Saccharomyces cerevisiae as a valuable platform for sesquiterpene, diterpene, triterpene, and carotene production (references 5, 10, 23, 26, 30, 31, 32, and 33 and references cited therein). However, all the efforts dedicated to the improvement of isoprenoid yields in S. cerevisiae have been performed using conventional laboratory strains, and there are no studies concerning natural or industrially relevant isolates.In recent years, many genes that encode plant monoterpene synthases (MTS), a family of enzymes which specifically catalyze the conversion of the ubiquitous C10 intermediate of isoprenoid biosynthesis geranyl pyrophosphate (GPP) to monoterpenes, have been characterized. Such is the case with the LIS gene (codes for S-linalool synthase) of Clarkia breweri, the first MTS-encoding gene to be isolated (13). In contrast to plants, S. cerevisiae cannot produce monoterpenes efficiently, mainly due to the lack of specific pathways involving MTS. However, GPP is formed as a transitory intermediate in the two-step synthesis of farnesyl pyrophosphate (FPP), catalyzed by FPP synthase (FPPS) (Fig. (Fig.1),1), and some natural S. cerevisiae strains have been shown to possess the ability to produce small amounts of monoterpenes (8). Whether this occurs through unspecific dephosphorylation of a more available endogenous pool of GPP and subsequent bioconversions is not known. In addition, it has recently been established that S. cerevisiae has enough free GPP to be used by exogenous monoterpene synthases to produce monoterpenes under laboratory and vinification conditions (22, 34).Open in a separate windowFIG. 1.Simplified isoprenoid pathway in S. cerevisiae, including the branch point to linalool. Dotted arrows indicate that more than one reaction is required to convert the substrate to the product indicated. Dashed arrows indicate the engineered steps. Abbreviations: HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; IPP, isopentenyl pyrophosphate; GPP, geranyl pyrophosphate; FPP, farnesyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; HMGR, HMG-CoA reductase; FPPS, FPP synthase; LIS, linalool synthase.Here we present the process for selecting and optimizing yeast strains for foreign monoterpene production. We have chosen the C. breweri LIS gene as a prototype because, when heterologously expressed in S. cerevisiae, it specifically results in the production of linalool (3,7-dimethyl-1,6-octadien-3-ol; a floral scent and bioactive acyclic monoterpene identified in numerous fruits and flowers) and no other by-products (22). Two S. cerevisiae strains of different origins have been selected and their endogenous mevalonate (MVA) pathways engineered to enhance the production of linalool. These strategies might be employed to produce any other recombinant monoterpene in S. cerevisiae by expressing the appropriate monoterpene synthase. 相似文献
5.
Various substrates, catalysts, and assay methods are currently used to screen inhibitors for their effect on the proteolytic activity of botulinum neurotoxin. As a result, significant variation exists in the reported results. Recently, we found that one source of variation was the use of various catalysts, and have therefore evaluated its three forms. In this paper, we characterize three substrates under near uniform reaction conditions using the most active catalytic form of the toxin. Bovine serum albumin at varying optimum concentrations stimulated enzymatic activity with all three substrates. Sodium chloride had a stimulating effect on the full length synaptosomal-associated protein of 25 kDa (SNAP25) and its 66-mer substrates but had an inhibitory effect on the 17-mer substrate. We found that under optimum conditions, full length SNAP25 was a better substrate than its shorter 66-mer or 17-mer forms both in terms of kcat, Km, and catalytic efficiency kcat/Km. Assay times greater than 15 min introduced large variations and significantly reduced the catalytic efficiency. In addition to characterizing the three substrates, our results identify potential sources of variations in previous published results, and underscore the importance of using well-defined reaction components and assay conditions. 相似文献
6.
Vaishnavi Rajagopal Madhura Gurjar Mikhail K. Levin Smita S. Patel 《The Journal of biological chemistry》2010,285(23):17821-17832
Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state Pi release kinetics on single-stranded RNA and DNA substrates of different lengths. The parameters of stepping were determined from global fitting of the two types of kinetic measurements into a computational model that describes translocation as a sequence of coupled hydrolysis-stepping reactions. Our results show that the HCV helicase moves with a faster rate on single stranded RNA than on DNA. The HCV helicase steps on the RNA or DNA one nucleotide at a time, and due to imperfect coupling, not every ATP hydrolysis event produces a successful step. Comparison of the helicase domain (NS3h) with the protease-helicase (NS3-4A) shows that the most significant contribution of the protease domain is to improve the translocation stepping efficiency of the helicase. Whereas for NS3h, only 20% of the hydrolysis events result in translocation, the coupling for NS3-4A is near-perfect 93%. The presence of the protease domain also significantly reduces the stepping rate, but it doubles the processivity. These effects of the protease domain on the helicase can be explained by an improved allosteric cross-talk between the ATP- and nucleic acid-binding sites achieved by the overall stabilization of the helicase domain structure. 相似文献
7.
Mutations Ile279 --> Ala, Ile283 --> Ala, Glu284 --> Ala, His285 --> Ala, His285 --> Lys, His285 --> Glu, Phe286 --> Ala, and His288 --> Ala in transmembrane helix M3 of the Na+,K(+)-ATPase were studied. Except for His285 --> Ala, these mutations were compatible with cell viability, permitting analysis of their effects on the overall and partial reactions of the Na+,K(+)-transport cycle. In Ile279 --> Ala and Ile283 --> Ala, the E1 form accumulated, whereas in His285 --> Lys and His285 --> Glu, E1P accumulated. Phe286 --> Ala displaced the conformational equilibria of dephosphoenzyme and phosphoenzyme in parallel in favor of E2 and E2P, respectively, and showed a unique enhancement of the E1P --> E2P transition rate. These effects suggest that M3 undergoes significant rearrangements in relation to E1-E2 and E1P-E2P conformational changes. Because the E1-E2 and E1P-E2P conformational equilibria were differentially affected by some of the mutations, the phosphorylated conformations seem to differ significantly from the dephospho forms in the M3 region. Mutation of His285 furthermore increased the Na(+)-activated ATPase activity in the absence of K+ ("Na(+)-ATPase activity"). Ile279 --> Ala, Ile283 --> Ala, and His288 --> Ala showed reduced Na+ affinity of the E1 form. The rate of Na(+)-activated phosphorylation from ATP was reduced in Ile279 --> Ala and Ile283 --> Ala, and these mutants showed evidence similar to Glu329 --> Gln of destabilization of the Na(+)-occluded state. 相似文献
8.
Andreas Zankl Emma L. DuncanGraeme R. Clark Evgeny A. GlazovMarie-Claude Addor Troels HerlinChong Ae Kim Bruno P. LeheupJim McGill Steven McTaggartStephen Mittas Anna L. MitchellGeert R. Mortier Stephen P. RobertsonMarie Schroeder Paulien TerhalMatthew A. Brown 《American journal of human genetics》2014
9.
H. Van Marck I. Dierynck G. Kraus S. Hallenberger T. Pattery G. Muyldermans L. Geeraert L. Borozdina R. Bonesteel C. Aston E. Shaw Q. Chen C. Martinez V. Koka J. Lee E. Chi M.-P. de Béthune K. Hertogs 《Journal of virology》2009,83(18):9512-9520
The requirement for multiple mutations for protease inhibitor (PI) resistance necessitates a better understanding of the molecular basis of resistance development. The novel bioinformatics resistance determination approach presented here elaborates on genetic profiles observed in clinical human immunodeficiency virus type 1 (HIV-1) isolates. Synthetic protease sequences were cloned in a wild-type HIV-1 background to generate a large number of close variants, covering 69 mutation clusters between multi-PI-resistant viruses and their corresponding genetically closely related, but PI-susceptible, counterparts. The vast number of mutants generated facilitates a profound and broad analysis of the influence of the background on the effect of individual PI resistance-associated mutations (PI-RAMs) on PI susceptibility. Within a set of viruses, all PI-RAMs that differed between susceptible and resistant viruses were varied while maintaining the background sequence from the resistant virus. The PI darunavir was used to evaluate PI susceptibility. Single sets allowed delineation of the impact of individual mutations on PI susceptibility, as well as the influence of PI-RAMs on one another. Comparing across sets, it could be inferred how the background influenced the interaction between two mutations, in some cases even changing antagonistic relationships into synergistic ones or vice versa. The approach elaborates on patient data and demonstrates how the specific mutational background greatly influences the impact of individual mutations on PI susceptibility in clinical patterns.The clinical use of protease inhibitors (PIs) for the treatment of human immunodeficiency virus (HIV) infection has led to a remarkable decline in HIV-1-related morbidity and mortality, and PIs are now a cornerstone of highly active antiretroviral therapy (14). However, the clinical benefit of PIs is limited by several factors, including long-term safety and tolerability, resistance development, and drug-drug interactions.The combination of extremely high levels of virus production and a high mutation rate is resulting in a growing resistance to anti-HIV drugs, making these less effective over time (1). In addition, an increasing proportion of primary infections involve the transmission of resistant viruses, including strains with reduced susceptibility to approved PIs (17). Therefore, patients need to be monitored for development of drug resistance, and treatment regimens have to be adapted accordingly. Most currently approved PIs are based on similar chemical structures, and therefore extensive cross-resistance can occur (7).In order to investigate the molecular basis of resistance development, we used the PI darunavir (DRV) as a model. DRV, previously known as TMC114, was approved in 2006 for the treatment of highly experienced patients and in 2008 for treatment of naïve patients. DRV has a high in vitro and in vivo potency against wild-type (WT) HIV, and this activity is maintained against HIV variants that are highly cross-resistant to other licensed PIs (2, 15). Moreover, there appears to be a very high genetic barrier to the development of resistance to DRV (3). A diminished virological response to DRV was only observed at week 24 (POWER studies [4]), when at least three specific baseline protease mutations (of V11I, V32I, L33F, I47V, I50V, I54L/M, G73S, L76V, I84V, and L89V) occurred in a background containing multiple protease mutations (median of at least 10 International AIDS Society-USA [IAS-USA] PI resistance-associated mutations [PI-RAMs] [11]).Mutations can interact as part of higher-order networks in complex and frequently overlapping patterns (7, 16, 18). In such patterns, the effect of an individual protease mutation on drug susceptibility depends on the presence of other mutations, PI-RAMs as well as background mutations. Many of the background mutations act synergistically with PI-RAMs and increase resistance to specific drugs. In addition, some of these mutations favor the development of other drug resistance mutations, thus lowering the genetic barrier to the development of PI resistance. In contrast, some mutations in the mutational background antagonize the effects of an individual PI-RAM. As resistance mutations are usually associated with reduced viral fitness, it may be that certain background mutations could (partly) compensate for this (12).In order to design drugs with high genetic barriers to resistance, a full understanding of the molecular basis of resistance development is needed. This includes the complex interplay between resistance mutations that can be studied only by exploring genetically close variants. Because of the high variability of HIV, it is difficult to find the genetically related variants required for such a study in patient databases, even if they contain sequences from thousands of virus isolates. Traditional approaches utilizing site-directed mutagenesis to create close variants by modifying the protease amino acids in existing viruses are feasible only on a small scale. The advent of mature gene assembly technologies makes the large-scale generation of closely related variants practicable. Here we describe a novel approach, bioinformatics resistance determination (BIRD), in which we created PI resistance sets between viral genotypes observed in patient samples. By varying a specific set of mutations in an invariable genetic background, the complex interactions between these mutations could be carefully dissected. Our studies illustrate how some mutations do not influence other mutations, while other changes act synergistically or antagonistically toward a specific RAM. Moreover, by comparing sets, we show how a specific background can alter the interplay between mutations. 相似文献
10.
The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β) and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD) simulation for the A130V mutant (>6 Å) and after 30 ns for A130T mutant (>6 Å). Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding. 相似文献
11.
Over the last 2 decades, covalent inhibitors have gained much popularity and is living up to its reputation as a powerful tool in drug discovery. Covalent inhibitors possess many significant advantages including increased biochemical efficiency, prolonged duration and the ability to target shallow, solvent exposed substrate-binding domains. However, rapidly mounting concerns over the potential toxicity, highly reactive nature and general lack of selectivity have negatively impacted covalent inhibitor development. Recently, a great deal of emphasis by the pharmaceutical industry has been placed toward the development of novel approaches to alleviate the major challenges experienced through covalent inhibition. This has unexpectedly led to the emergence of “selective” covalent inhibitors. The purpose of this review is not only to provide an overview from literature but to introduce a technical guidance as to how to initiate a systematic “road map” for the design of selective covalent inhibitors which we believe may assist in the design and development of optimized potential selective covalent HCV NS3/4A viral protease inhibitors. 相似文献
12.
Interconversions of ribosomes, between forms that are active and inactive in peptidyl transfer, were studied and conditions favoring a state of equilibrium between the two forms were established. Under such conditions activity was enhanced two-to fivefold by the antibiotics erythromycin, vernamycin Bα, lincomycin, chloramphenicol and vernamycin A. The antibiotics puromycin, gougerotin, thiostrepton and siomycin, whose target site is also the 50 S ribosomal subunit, were ineffective.A common feature of the effective antibiotics is their ability to bind to ribosomes active in peptidyl transfer but not to enzymatically inactive ribosomes. The activity enhancing effect of antibiotics is therefore interpreted as being due to a shift in the equilibrium between the two ribosomal forms in favor of the active conformation, brought about by the preferential binding of the antibiotic to ribosomes in this form. The results stress the flexible nature of ribosome structure and suggest that antibiotics can function as allosteric effectors in modifying ribosome conformation. 相似文献
13.
Integrins are transmembrane proteins linking the extracellular matrix or certain cell–cell contacts to the cytoskeleton. To study integrin–cytoskeleton interactions we wanted to relate talin–integrin interaction to integrin function in cell spreading and formation of focal adhesions. For talin-binding studies we used fusion proteins of glutathione S-transferase and the cytoplasmic domain of integrin β1 (GST-cytoβ1) expressed in bacteria. For functional studies chimeric integrins containing the extracellular and transmembrane parts of β3 linked to the cytoplasmic domain of β1 were expressed in CHO cells as a dimer with the αIIb subunit. Point mutations in the amino acid sequence N785PIY788 of β1 disrupted both the integrin–talin interaction and the ability of the integrin to mediate cell spreading. COOH-terminal truncation of β1 at the amino acid position 797 disrupted its ability to mediate cell spreading, whereas the disruption of talin binding required deletion of five more amino acids (truncation at position 792). A synthetic peptide from this region of β1 (W780DTGENPIYKSAV792) bound to purified talin and inhibited talin binding to GST-cytoβ1. The ability of the mutants to mediate focal adhesion formation or to codistribute to focal adhesions formed by other integrins correlated with their ability to mediate cell spreading. These results confirm the previous finding that a talin-binding site in the integrin β1 tail resides at or close to the central NPXY motif and suggest that the integrin–talin interaction is necessary but not sufficient for integrin-mediated cell spreading. 相似文献
14.
Shi J Han N Lim L Lua S Sivaraman J Wang L Mu Y Song J 《PLoS computational biology》2011,7(2):e1001084
Despite utilizing the same chymotrypsin fold to host the catalytic machinery, coronavirus 3C-like proteases (3CLpro) noticeably differ from picornavirus 3C proteases in acquiring an extra helical domain in evolution. Previously, the extra domain was demonstrated to regulate the catalysis of the SARS-CoV 3CLpro by controlling its dimerization. Here, we studied N214A, another mutant with only a doubled dissociation constant but significantly abolished activity. Unexpectedly, N214A still adopts the dimeric structure almost identical to that of the wild-type (WT) enzyme. Thus, we conducted 30-ns molecular dynamics (MD) simulations for N214A, WT, and R298A which we previously characterized to be a monomer with the collapsed catalytic machinery. Remarkably, three proteases display distinctive dynamical behaviors. While in WT, the catalytic machinery stably retains in the activated state; in R298A it remains largely collapsed in the inactivated state, thus implying that two states are not only structurally very distinguishable but also dynamically well separated. Surprisingly, in N214A the catalytic dyad becomes dynamically unstable and many residues constituting the catalytic machinery jump to sample the conformations highly resembling those of R298A. Therefore, the N214A mutation appears to trigger the dramatic change of the enzyme dynamics in the context of the dimeric form which ultimately inactivates the catalytic machinery. The present MD simulations represent the longest reported so far for the SARS-CoV 3CLpro, unveiling that its catalysis is critically dependent on the dynamics, which can be amazingly modulated by the extra domain. Consequently, mediating the dynamics may offer a potential avenue to inhibit the SARS-CoV 3CLpro. 相似文献
15.
Omar A. Quintero William C. Unrath Stanley M. Stevens Jr. Uri Manor Bechara Kachar Christopher M. Yengo 《The Journal of biological chemistry》2013,288(52):37126-37137
Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells. 相似文献
16.
Mitchell Kramer Daniel Halleran Moazur Rahman Mazhar Iqbal Muhammad Ikram Anwar Salwa Sabet Edward Ackad Mohammad Yousef 《PloS one》2014,9(8)
The protease domain of the Hepatitis C Virus (HCV) nonstructural protein 3 (NS3) has been targeted for inhibition by several direct-acting antiviral drugs. This approach has had marked success to treat infections caused by HCV genotype 1 predominant in the USA, Europe, and Japan. However, genotypes 3 and 4, dominant in developing countries, are resistant to a number of these drugs and little progress has been made towards understanding the structural basis of their drug resistivity. We have previously developed a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active sites of the NS3 proteases of HCV-1b and 4a in relation to their catalytic activity and drug susceptibility. Here, we improved the methodology, extended the analysis to include genotype 3a (predominant in South Asia including Pakistan), and compared the results of the three genotypes (1b, 3a and 4a). The 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-3a and 4a compared to that of HCV-1b NS3 protease. The divergence is gradual and genotype-dependent, with HCV-1b being the most stable, HCV-4a being the most unstable and HCV-3a representing an intermediate state. These results suggest that the structural dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug susceptibility seen in NS3 proteases of HCV-3a and 4a. 相似文献
17.
目的:建立Tet-On调控系统和Cre/loxP基因剔除系统双重调控表达丙型肝炎病毒(HCV)NS3/4A丝氨酸蛋白酶三转基因小鼠。方法:选择适龄并经鉴定的在Tet-on系统调控下肝脏特异性表达Cre重组酶的双转基因小鼠Lap/LC-1与在Tet-on系统调控下肝脏特异性表达萤光素酶(Luc)的双转基因小鼠Lap/NS3/4A交配,子代小鼠经PCR检测、筛选基因组中NS3/4A、Lap、LC-1等3个转基因片段均阳性的小鼠。三阳性的NS3/4A/Lap/LC-1小鼠经多西环素(Dox)诱导1周后,以在体生物发光成像系统(BLI)检测报告基因Luc的表达,免疫组化检测小鼠体内Cre重组酶、HCV NS3/4A丝氨酸蛋白酶的表达状况。结果:NS3/4A/Lap/LC-1小鼠经Dox诱导后,BLI结果显示仅在小鼠肝脏部位有强烈的发光信号,表明这些小鼠肝细胞内报告基因Luc特异高效表达;免疫组化结果证实Cre重组酶、NS3/4A蛋白酶仅在经诱导后的小鼠肝细胞中特异性表达。结论:建立了Tet-On调控系统和Cre/loxP基因剔除系统双重调控下表达HCV NS3/4A丝氨酸蛋白酶的三转基因小鼠模型,为进一步研究HCV NS3/4A丝氨酸蛋白酶在HCV感染后与宿主相互作用的机制,以及抗NS3/4A丝氨酸蛋白酶特异性抑制剂的筛选奠定了基础。 相似文献
18.
19.