首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-like growth factor-binding protein-3 (IGFBP-3) expression is frequently suppressed in liver cancers and can be reactivated by histone deacetylase (HDAC) inhibition. This study examined the role of IGFBP-3 in mediating the effects of the HDAC inhibitor MS-275 in liver cancer cells and identified IGFBP-3-dependent proteins that regulate proliferation and migration. In HepG2 cells, MS-275 inhibited DNA synthesis, cell cycle activity, and cell viability concomitantly with increased binding of acetylated histone H3 to IGFBP-3 promoter sequences and induction of IGFBP-3 expression. IGFBP-3 down-regulation by siRNA significantly reversed the inhibition of cell viability and DNA synthesis by MS-275, indicating an intermediary role for IGFBP-3. Induction of the cyclin-dependent kinase inhibitor p21 by MS-275 was attenuated by IGFBP-3 down-regulation, providing an explanation for IGFBP-3-dependent effects of MS-275 on cell cycle activity. In contrast, MS-275 stimulated HepG2 cell migration, an effect also inhibited by IGFBP-3 down-regulation. Among genes whose induction by MS-275 was attenuated by IGFBP-3 down-regulation, LYVE1 and THBS2 (thrombospondin-2) were identified as mediators of IGFBP-3-dependent effects of MS-275. Silencing of either protein had no effect on the inhibition of HepG2 viability by MS-275 but reversed its stimulatory effect on cell migration. We conclude that among genes up-regulated by MS-275, IGFBP-3 is a key mediator of effects on hepatoma cell growth and migration, involving IGFBP-3-dependent proteins p21 (proliferation) and LYVE1 and THBS2 (migration). The enhanced cell motility that accompanies reactivation of IGFBP-3 expression in liver cancer by HDAC inhibition suggests the possibility of increased metastatic spread despite inhibited cell proliferation.  相似文献   

2.
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with low survival rate, so new therapies are urgently needed. Histone deacetylases (HDACs) play a critical role in tumorigenesis, and HDACs inhibition is a potential therapeutic target in ESSC. In our study, we evaluated the effect and molecular mechanism of MS-275 (an inhibitor of HDACs) on ESCC cells. We found that HDAC1 and HDAC2 were overexpressed in ESCC tissues and related with clinical pathological features of patients with ESCC. MS-275 markedly reduced HDAC1 and HDAC2 expression, whereas increased the level of AcH3 and AcH2B. MS-275 suppressed proliferation and clonogenicity of ESCC cells in a concentration-dependent manner. In addition, MS-275 induced apoptosis, arrested cell cycle, and inhibited migration, epithelial–mesenchymal transition, and sphere-forming ability of ESCC cells in vitro. Moreover, p-Akt1 and p-mTOR were downregulated by MS-275. Finally, MS-275 significantly inhibited tumor growth in vivo. Taken together, HDAC1 and HDAC2 are associated with the progression of ESCC, and MS-275 hinders the progression and stemness of ESCC cells by suppressing the PI3K/Akt/mTOR pathway. Our findings show that MS-275 inhibits ESCC cells growth in vitro and in vivo, which is a potential drug for the ESCC therapy.  相似文献   

3.
New orally bioavailable 5-(thiophen-2-yl)-substituted 2-aminobenzamide-series histone deacetylase inhibitors were synthesized. These compounds possess a morpholine or piperadine-derived moiety as an aqueous soluble functional group. Among them, 8b, having a 4-ethyl-2,3-dioxopiperazine-1-carboxamide group as a surface recognition domain, showed promising inhibitory activities against HCT116 cell growth and HDAC1/2. Notably, unlike MS-275, this compound did not induce apoptosis in the cell cycle tests. We therefore conducted antitumor tests of 8b and MS-275 against HCT116 cell xenografts in nude mice. Compound 8b reduced the volume of tumor mass to T/C: 60% and 47% at 45 and 80mg/kg over 16days, respectively. These values were comparable to the rate (T/C: 51% at 45mg/kg) for MS-275. Furthermore, 8b, at neither 45 nor 80mg/kg, induced the weight loss which was observed in the mice given MS-275 at 45mg/kg.  相似文献   

4.

Background

Most patients with advanced Ewing's sarcoma (EWS) respond poorly to conventional chemotherapy, indicating the need for new treatment approaches. Epigenetic events, such as promoter hypermethylation and chromatin histone deacetylation, silence the expression of tumor suppressor genes (TSGs) and play an important role in tumorigenesis. These epigenetic changes can be reversed by using 5-aza-2'-deoxycytidine (5AZA-CdR), a potent inhibitor of DNA methylation, in combination with an inhibitor of histone deacetylase (HDAC).

Results

Here, we used a clonogenic assay to evaluate the in vitro antineoplastic activity of 5AZA-CdR in combination with different HDAC inhibitors on EWS cells. We observed that the HDAC inhibitors, MS-275, trichostatin-A, phenylbutyrate, LAQ824 and depsipeptide, enhanced the antineoplastic action of 5AZA-CdR on EWS cells. The combination of 5AZA-CdR and MS-275 showed marked synergy, and was correlated with significant reactivation of the expression of two TSGs, E-cadherin and tumor suppressor lung cancer-1 (TSLC1), in a EWS cell line.

Conclusion

These results suggest the value of future clinical studies investigating the combination of 5AZA-CdR and MS-275 in patients with advanced EWS.  相似文献   

5.
6.
MS-275 is a synthetic benzamide derivative of the histone deacetylase inhibitor and is currently in phase I/II clinical trials. Many reports have shown that the anti-tumor activity of MS-275 in several types of cancer is mainly attributable to its capacity to induce the apoptotic death of tumor cells. It remains unclear if autophagy is involved in MS-275 treatment of cancer cells. Here, we first show that MS-275 induces human colon cancer cell HCT116 autophagy as well as apoptosis. Short-term treatment (24h) induced HCT116 cells to undergo autophagy with dependence on intracellular reactive oxygen species production and ERK activation. The activated reactive oxygen species/ERK signal promoted Atg7 protein expression, which triggered MS-275-induced cancer cell autophagy. However, after prolonged treatment with MS-275 (over 48h), autophagic cells turned apoptotic, which was also dependent on reactive oxygen species generation. Interestingly, we found that p38 MAP kinase played a vital role in the switch from autophagy to apoptosis in MS-275-induced human colon cancer cells. High expression of p38 induced cell autophagy, but low expression resulted in apoptosis. In addition, observations in vivo are strongly consistent with the in vitro results. Therefore, these findings extend our understanding of the action of MS-275 in inducing cancer cell death and suggest that it may be a promising clinical chemotherapeutic agent with multiple effects.  相似文献   

7.
Besides inactivating tumour suppressor activity in cells, mutations in p53 confer significant oncogenic functions and promote metastasis and resistance to anticancer therapy. A variety of therapies involving genetic and epigenetic signalling events regulate tumorogenesis and progression in such cases. Pharmacological interventions with HDAC inhibitors have shown promise in therapy. This work explores the changes in efficacy of the four HDAC inhibitors SAHA, MS-275, valproic acid and sodium butyrate on a panel of colon cancer cell lines – HCT116 (p53 wt), HCT116 p53-/-, HT29 and SW480 (with mutations in p53). Clonogenic assays, gene profiling and epigenetic expression done on these cells point to p53 dependent differential activity of the 4 HDAC inhibitors which also elevate methylation levels in p53 mutant cell lines. In silico modelling establishes the alterations in interactions that lead to such differential activity of valproic acid, one of the inhibitors considered for the work. Molecular Dynamic simulations carried out on the valproic acid complex ensure stability of the complex. This work establishes a p53 dependent epigenetic signalling mechanism triggered by HDAC inhibition expanding the scope of HDAC inhibitors in adjuvant therapy for p53 mutant tumours.  相似文献   

8.
9.
Novel 2-aminoanilide histone deacetylase (HDAC) inhibitors were designed to increase their contact with surface residues surrounding the HDAC active site compared to the contacts made by existing clinical 2-aminoanilides such as SNDX-275, MGCD0103, and Chidamide. Their HDAC selectivity was assessed using p21 and klf2 reporter gene assays in HeLa and A204 cells, respectively, which provide a cell-based readout for the inhibition of HDACs associated either with the p21 or klf2 promoter. A subset of the designed compounds selectively induced p21 over klf2 relative to the clinical reference compound SNDX-275. A representative lead compound from this subset had antiproliferative effects in cancer cells associated with induction of acetylated histone H4, endogenous p21, cell cycle arrest, and apoptosis. The p21- versus klf2-selective compounds described herein may provide a chemical starting point for developing clinically-differentiated HDAC inhibitors for cancer therapy.  相似文献   

10.

Background

In recent years, the integration of ‘omics’ technologies, high performance computation, and mathematical modeling of biological processes marks that the systems biology has started to fundamentally impact the way of approaching drug discovery. The LINCS public data warehouse provides detailed information about cell responses with various genetic and environmental stressors. It can be greatly helpful in developing new drugs and therapeutics, as well as improving the situations of lacking effective drugs, drug resistance and relapse in cancer therapies, etc.

Results

In this study, we developed a Ternary status based Integer Linear Programming (TILP) method to infer cell-specific signaling pathway network and predict compounds’ treatment efficacy. The novelty of our study is that phosphor-proteomic data and prior knowledge are combined for modeling and optimizing the signaling network. To test the power of our approach, a generic pathway network was constructed for a human breast cancer cell line MCF7; and the TILP model was used to infer MCF7-specific pathways with a set of phosphor-proteomic data collected from ten representative small molecule chemical compounds (most of them were studied in breast cancer treatment). Cross-validation indicated that the MCF7-specific pathway network inferred by TILP were reliable predicting a compound’s efficacy. Finally, we applied TILP to re-optimize the inferred cell-specific pathways and predict the outcomes of five small compounds (carmustine, doxorubicin, GW-8510, daunorubicin, and verapamil), which were rarely used in clinic for breast cancer. In the simulation, the proposed approach facilitates us to identify a compound’s treatment efficacy qualitatively and quantitatively, and the cross validation analysis indicated good accuracy in predicting effects of five compounds.

Conclusions

In summary, the TILP model is useful for discovering new drugs for clinic use, and also elucidating the potential mechanisms of a compound to targets.
  相似文献   

11.
New compounds derived from inhibitors of histone deacetylases (HDACs) have been synthesized and their antiproliferative activities towards non small lung cancer cell line H661 evaluated. Their design is based on hybrids between indanones to limit conformational mobility and other known HDAC inhibitors (SAHA, MS-275). The synthesis of these new derivatives was achieved by alkylation of appropriate indanones to introduce the side chain bearing a terminal ester group, the latter being a precursor of hydroxamic acid and aminobenzamide derivatives. These new analogues were found to be moderately active to inhibit H661 cell proliferation.  相似文献   

12.
13.
ABSTRACT: BACKGROUND: The behaviour of tumour cells depends on factors such as genetics and the tumour microenvironment. The latter plays a crucial role in normal mammary gland development and also in breast cancer initiation and progression. Breast cancer tissues tend to be highly desmoplastic and dense matrix as a pre-existing condition poses one of the highest risk factors for cancer development. However, matrix influence on tumour cell gene expression and behaviour such as cell migration is not fully elucidated. RESULTS: We generated high-density (HD) matrices that mimicked tumour collagen content of 20 mg/cm3 that were ~14-fold stiffer than low-density (LD) matrix of 1 mg/cm3. Live-cell imaging showed breast cancer cells utilizing cytoplasmic streaming and cell body contractility for migration within HD matrix. Cell migration was blocked in the presence of both the ROCK inhibitor, Y-27632, and the MMP inhibitor, GM6001, but not by the drugs individually. This suggests roles for ROCK1 and MMP in cell migration are complicated by compensatory mechanisms. ROCK1 expression and protein activity, were significantly upregulated in HD matrix but these were blocked by treatment with a histone deacetylase (HDAC) inhibitor, MS-275. In HD matrix, the inhibition of ROCK1 by MS-275 was indirect and relied upon protein synthesis and Notch1. Inhibition of Notch1 using pooled siRNA or DAPT abrogated the inhibition of ROCK1 by MS-275. CONCLUSION: Increased matrix density elevates ROCK1 activity, which aids in cell migration via cell contractility. The upregulation of ROCK1 is epigenetically regulated in an indirect manner involving the repression of Notch1. This is demonstrated from inhibition of HDACs by MS- 275, which caused an upregulation of Notch1 levels leading to blockade of ROCK1 expression.  相似文献   

14.
15.
Neuroprotective properties of the mood stabilizer valproic acid (VPA) are implicated in its therapeutic efficacy. Heat-shock protein 70 (HSP70) is a molecular chaperone, neuroprotective and anti-inflammatory agent. This study aimed to investigate underlying mechanisms and functional significance of HSP70 induction by VPA in rat cortical neurons. VPA treatment markedly up-regulated HSP70 protein levels, and this was accompanied by increased HSP70 mRNA levels and promoter hyperacetylation and activity. Other HDAC inhibitors – sodium butyrate, trichostatin A, and Class I HDAC-specific inhibitors MS-275 and apicidin, – all mimicked the ability of VPA to induce HSP70. Pre-treatment with phosphatidylinositol 3-kinase inhibitors or an Akt inhibitor attenuated HSP70 induction by VPA and other HDAC inhibitors. VPA treatment increased Sp1 acetylation, and a Sp1 inhibitor, mithramycin, abolished the induction of HSP70 by HDAC inhibitors. Moreover, VPA promoted the association of Sp1 with the histone acetyltransferases p300 and recruitment of p300 to the HSP70 promoter. Further, VPA-induced neuroprotection against glutamate excitotoxicity was prevented by blocking HSP70 induction. Taken together, the data suggest that the phosphatidylinositol 3-kinase/Akt pathway and Sp1 are likely involved in HSP70 induction by HDAC inhibitors, and induction of HSP70 by VPA in cortical neurons may contribute to its neuroprotective and therapeutic effects.  相似文献   

16.
A novel series of non-hydroxamate HDAC inhibitors (HDACi) showing a uracil group at the left and a 2-aminoanilide/2-aminoanilide-like portion at the right head have been reported. In particular, the new compounds incorporating a 2-aminoanilide moiety behaved as class I-selective HDACi. Compound 8, the most potent and class I-selective, showed weak apoptosis (higher than MS-275) joined to cytodifferentiating activity on U937 cells. Surprisingly, the highest differentiation was observed with 13, through an effect that seems to be unrelated to HDAC inhibition.  相似文献   

17.
18.
New 2-aminobenzamide-type histone deacetylase (HDAC) inhibitors were synthesized. They feature a sulfur-containing bicyclic arylmethyl moiety—a surface recognition domain introduced to increase in cellular uptake—and a substituted tert-amino group which affects physicochemical properties such as aqueous solubility. Compound 22 with a (2-hydroxyethyl)(4-(thiophen-2-yl)benzyl)amino group reduced the volume of human colon cancer HCT116 xenografts in nude mice to T/C 67% by oral administration at 45 mg/kg, which was comparable to the rate (T/C 62%) for a positive control, MS-275. Western blot analyses as well as cell cycle and TUNEL assays by flow cytometry suggested that the two compounds inhibited the growth of cancer cells via similar mechanisms.  相似文献   

19.
Histone deacetylases (HDACs) regulate the acetylation of histones in the control of gene expression. Many non-histone proteins are also targeted for acetylation, including TGF-β signalling pathway components such as Smad2, Smad3 and Smad7. Our studies in mouse C3H10T1/2 fibroblasts suggested that a number of TGF-β-induced genes that regulate matrix turnover are selectively regulated by HDACs. Blockade of HDAC activity with trichostatin A (TSA) abrogated the induction of a disintegrin and metalloproteinase 12 (Adam12) and tissue inhibitor of metalloproteinases-1 (Timp-1) genes by TGF-β, whereas plasminogen activator inhibitor-1 (Pai-1) expression was unaffected. Analysis of the activation of cell signalling pathways demonstrated that TGF-β induced robust ERK and PI3K activation with delayed kinetics compared to the phosphorylation of Smads. The TGF-β induction of Adam12 and Timp-1 was dependent on such non-Smad signalling pathways and, importantly, HDAC inhibitors completely blocked their activation without affecting Smad signalling. Analysis of TGF-β-induced Adam12 and Timp-1 expression and ERK/PI3K signalling in the presence of semi-selective HDAC inhibitors valproic acid, MS-275 and apicidin implicated a role for class I HDACs. Furthermore, depletion of HDAC3 by RNA interference significantly down-regulated TGF-β-induced Adam12 and Timp-1 expression without modulating Pai-1 expression. Correlating with the effect of HDAC inhibitors, depletion of HDAC3 also blocked the activation of ERK and PI3K by TGF-β. Collectively, these data confirm that HDACs, and in particular HDAC3, are required for activation of the ERK and PI3K signalling pathways by TGF-β and for the subsequent gene induction dependent on these signalling pathways.  相似文献   

20.
Histone deacetylase (HDAC) inhibitors induce the hyperacetylation of nucleosomal histones in carcinoma cells resulting in the expression of repressed genes that cause growth arrest, terminal differentiation, and/or apoptosis. In vitro selectivity of several novel hydroxamate HDAC inhibitors including succinimide macrocyclic hydroxamates and the non-hydroxamate alpha-ketoamide inhibitors was investigated using isolated enzyme preparations and cellular assays. In vitro selectivity for the HDAC isozymes (HDAC1/2, 3, 4/3, and 6) was not observed for these HDAC inhibitors or the reference HDAC inhibitors, MS-275 and SAHA. In T24 and HCT116 cells these compounds caused the accumulation of acetylated histones H3 and H4; however, the succinimide macrocyclic hydroxamates and the alpha-ketoamides did not cause the accumulation of acetylated alpha-tubulin. These data suggest "selectivity" can be observed at the cellular level with HDAC inhibitors and that the nature of the zinc-chelating moiety is an important determinant of activity against tubulin deacetylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号