首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular evolutionary signatures of miRNAs inform our understanding of their emergence, biogenesis, and function. The known signatures of miRNA evolution have derived mostly from the analysis of deeply conserved, canonical loci. In this study, we examine the impact of age, biogenesis pathway, and genomic arrangement on the evolutionary properties of Drosophila miRNAs. Crucial to the accuracy of our results was our curation of high-quality miRNA alignments, which included nearly 150 corrections to ortholog calls and nucleotide sequences of the global 12-way Drosophilid alignments currently available. Using these data, we studied primary sequence conservation, normalized free-energy values, and types of structure-preserving substitutions. We expand upon common miRNA evolutionary patterns that reflect fundamental features of miRNAs that are under functional selection. We observe that melanogaster-subgroup-specific miRNAs, although recently emerged and rapidly evolving, nonetheless exhibit evolutionary signatures that are similar to well-conserved miRNAs and distinct from other structured noncoding RNAs and bulk conserved non-miRNA hairpins. This provides evidence that even young miRNAs may be selected for regulatory activities. More strikingly, we observe that mirtrons and clustered miRNAs both exhibit distinct evolutionary properties relative to solo, well-conserved miRNAs, even after controlling for sequence depth. These studies highlight the previously unappreciated impact of biogenesis strategy and genomic location on the evolutionary dynamics of miRNAs, and affirm that miRNAs do not evolve as a unitary class.  相似文献   

2.
3.
4.
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes may be caused by the fixation of new recessive or partially recessive advantageous mutations (the Faster-X effect). This effect is expected to be largest for mutations that affect only male fitness and absent for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using genes with different levels of sex-biased expression and by estimating the extent of adaptive evolution of non-synonymous mutations from polymorphism and divergence data. We detected both a Faster-X effect and an effect of male-biased gene expression. There was no evidence for a strong association between the two effects—modest levels of male-biased gene expression increased the rate of adaptive evolution on both the autosomes and the X chromosome, but a Faster-X effect occurred for both unbiased genes and female-biased genes. The rate of genetic recombination did not influence the magnitude of the Faster-X effect, ruling out the possibility that it reflects less Hill–Robertson interference for X-linked genes.  相似文献   

5.
The nature of the forces affecting base composition is a key question in genome evolution. There is uncertainty as to whether differences in the GC contents of non-coding sequences reflect differences in mutational bias, or in the intensity of selection or biased gene conversion. We have used a polymorphism dataset for non-coding sequences on the X chromosome of Drosophila simulans to examine this question. The proportion of GC-->AT versus AT-->GC polymorphic mutations in a locus is correlated with its GC content. This implies the action of forces that favour GC over AT base pairs, which are apparently strongest in GC-rich sequences.  相似文献   

6.
Sleep length and metabolic dysfunction are correlated, but the causal relationship between these processes is unclear. Octopamine promotes wakefulness in the fly by acting through the insulin-producing cells (IPCs) in the fly brain. To determine if insulin signaling mediates the effects of octopamine on sleep:wake behavior, we assayed flies in which insulin signaling activity was genetically altered. We found that increasing insulin signaling does not promote wake, nor does insulin appear to mediate the wake-promoting effects of octopamine. Octopamine also affects metabolism in invertebrate species, including, as we show here, Drosophila melanogaster. Triglycerides are decreased in mutants with compromised octopamine signaling and elevated in flies with increased activity of octopaminergic neurons. Interestingly, this effect is mediated at least partially by insulin, suggesting that effects of octopamine on metabolism are independent of its effects on sleep. We further investigated the relative contribution of metabolic and sleep phenotypes to the starvation response of flies with altered octopamine signaling. Hyperactivity (indicative of foraging) induced by starvation was elevated in octopamine receptor mutants, despite their high propensity for sleep, indicating that their metabolic state dictates their behavioral response under these conditions. Moreover, flies with increased octopamine signaling do not suppress sleep in response to starvation, even though they are normally hyper-aroused, most likely because of their high triglyceride levels. Together, these data suggest that observed correlations between sleep and metabolic phenotypes can result from shared molecular pathways rather than causality, and environmental conditions can lead to the dominance of one phenotype over the other.  相似文献   

7.
Heavy alcohol consumption provokes an array of degenerative pathologies but the signals that couple alcohol exposure to regulated forms of cell death are poorly understood. Using Drosophila as a model, we genetically establish that the severity of ethanol challenge dictates the type of death that occurs. In contrast to responses seen under acute exposure, cytotoxic responses to milder challenges required gene encoding components of the apoptosome, Dronc and Dark. We conducted a genome-wide RNAi screen to capture targets that specifically mediate ethanol-induced cell death. One effector, Drat, encodes a novel protein that contains an ADH domain but lacks essential residues in the catalytic site. In cultured cells and neurons in vivo, depletion of Drat conferred protection from alcohol-induced apoptosis. Adults mutated for Drat showed both improved survival and enhanced propensities toward sedation after alcohol challenge. Together, these findings highlight novel effectors that support regulated cell death incited by alcohol stress in vitro and in vivo.  相似文献   

8.
Two recent studies provide provocative experimental findings about the potential influence of kin recognition and cooperation on the level of sexual conflict in Drosophila melanogaster. In both studies, male fruit flies apparently curbed their mate-harming behaviours in the presence of a few familiar or related males, suggesting some form of cooperation mediated by kin selection. In one study, the reduction in agonistic behaviour by brothers apparently rendered them vulnerable to dramatic loss of paternity share when competing with an unrelated male. If these results are robust and generalizable, fruit flies could be a major new focus for the experimental study of kin selection and social evolution. In our opinion, however, the restrictive conditions required for male cooperation to be adaptive in this species make it unlikely to evolve. We investigated these phenomena in two different populations of D. melanogaster using protocols very similar to those in the two previous studies. Our experiments show no evidence for a reduction in mate harm based upon either relatedness or familiarity between males, and no reduction in male reproductive success when two brothers are in the presence of an unfamiliar, unrelated, ‘foreign’ male. Thus, the reduction of sexual conflict owing to male cooperation does not appear to be a general feature of the species, at least under domestication, and these contrasting results call for further investigation: in new populations, in the field and in the laboratory populations in which these phenomena have been reported.  相似文献   

9.
Memory is a complex and dynamic process that is composed of different phases. Its evolution under natural selection probably depends on a balance between fitness benefits and costs. In Drosophila, two separate forms of consolidated memory phases can be generated experimentally: anaesthesia-resistant memory (ARM) and long-term memory (LTM). In recent years, several studies have focused on the differences between these long-lasting memory types and have found that, at the functional level, ARM and LTM are antagonistic. How this functional relationship will affect their evolutionary dynamics remains unknown. We selected for flies with either improved ARM or improved LTM over several generations, and found that flies selected specifically for improvement of one consolidated memory phase show reduced performance in the other memory phase. We also found that improved LTM was linked to decreased longevity in male flies but not in females. Conversely, males with improved ARM had increased longevity. We found no correlation between either improved ARM or LTM and other phenotypic traits. This is, to our knowledge, the first evidence of a symmetrical evolutionary trade-off between two memory phases for the same learning task. Such trade-offs may have an important impact on the evolution of cognitive capacities. On a neural level, these results support the hypothesis that mechanisms underlying these forms of consolidated memory are, to some degree, antagonistic.  相似文献   

10.
Two recent studies demonstrated a positive correlation between divergence in gene expression and protein sequence in Drosophila. This correlation could be driven by positive selection or variation in functional constraint. To distinguish between these alternatives, we compared patterns of molecular evolution for 1,862 genes with two previously reported estimates of expression divergence in Drosophila. We found a slight negative trend (nonsignificant) between positive selection on protein sequence and divergence in expression levels between Drosophila melanogaster and Drosophila simulans. Conversely, shifts in expression patterns during Drosophila development showed a positive association with adaptive protein evolution, though as before the relationship was weak and not significant. Overall, we found no strong evidence for an increase in the incidence of positive selection on protein-coding regions in genes with divergent expression in Drosophila, suggesting that the previously reported positive association between protein and regulatory divergence primarily reflects variation in functional constraint.  相似文献   

11.
The view that only the production and deposition of Abeta plays a decisive role in Alzheimer's disease has been challenged by recent evidence from different model systems, which attribute numerous functions to the amyloid precursor protein (APP). To investigate the potential cellular functions of APP and its paralogs, we use transgenic Drosophila as a model. Upon overexpression of the APP-family members, transformations of cell fates during the development of the peripheral nervous system were observed. Genetic analysis showed that APP, APLP1 and APLP2 induce Notch gain-of-function phenotypes, identified Numb as a potential target and provided evidence for a direct involvement of Disabled and Neurotactin in the induction of the phenotypes. The severity of the induced phenotypes not only depended on the dosage and the particular APP-family member but also on particular domains of the molecules. Studies with Drosophila APPL confirmed the results obtained with human proteins and the analysis of flies mutant for the appl gene further supports an involvement of APP-family members in neuronal development and a crosstalk between the APP family and Notch.  相似文献   

12.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch.Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages.The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.  相似文献   

13.
In mammals, the neurotransmitter dopamine (DA) modulates a variety of behaviours, although DA function is mostly associated with motor control and reward. In insects such as the fruitfly, Drosophila melanogaster, DA also modulates a wide array of behaviours, ranging from sleep and locomotion to courtship and learning. How can a single molecule play so many different roles? Adaptive changes within the DA system, anatomical specificity of action and effects on a variety of behaviours highlight the remarkable versatility of this neurotransmitter. Recent genetic and pharmacological manipulations of DA signalling in Drosophila have launched a surfeit of stories—each arguing for modulation of some aspect of the fly''s waking (and sleeping) life. Although these stories often seem distinct and unrelated, there are some unifying themes underlying DA function and arousal states in this insect model. One of the central roles played by DA may involve perceptual suppression, a necessary component of both sleep and selective attention.  相似文献   

14.
The study of social behaviour within groups has relied on fixed definitions of an ‘interaction’. Criteria used in these definitions often involve a subjectively defined cut-off value for proximity, orientation and time (e.g. courtship, aggression and social interaction networks) and the same numerical values for these criteria are applied to all of the treatment groups within an experiment. One universal definition of an interaction could misidentify interactions within groups that differ in life histories, study treatments and/or genetic mutations. Here, we present an automated method for determining the values of interaction criteria using a pre-defined rule set rather than pre-defined values. We use this approach and show changing social behaviours in different manipulations of Drosophila melanogaster. We also show that chemosensory cues are an important modality of social spacing and interaction. This method will allow a more robust analysis of the properties of interacting groups, while helping us understand how specific groups regulate their social interaction space.  相似文献   

15.
Plant miRNAs, the critical regulator of gene expression, involve many development processes in vivo. However, the roles of miRNAs in plant cell proliferation and redifferntiation in vitro remain unknown. To determine better the molecular mechanism of these processes, we have recently reported that a set of miRNAs with different expression patterns between cells of totipotent and non-totipotent Arabidopsis calli. Some of these were specifically up- or downregulated during callus formation or shoot regeneration, and other development. Among them, miR160, and one of its target genes, ARF10, regulated Arabidopsis in vitro shoot regeneration via WUS, CLV3 and CUC1/2. The miR160-overexpressing, 35S transgenic lines, exhibited reduced shoot regeneration efficiency. The mARF10, a miR160-resistant form of ARF10, showed a high level of shoot regeneration ability. In the transgenic, expression of the above shoot meristem-specific genes was elevated, which is consistent with the improved shoot regeneration. In contrast, the ARF10 deficient knockout mutant produced fewer regenerated shoot. However, overexpressors of ARF10 were only marginally more efficient than the wild type with the respect to shoot regeneration. Our observation strongly supports that proper shoot regeneration from in vitro cultured cells requires the miR160-directed negative influence of ARF10. The enhanced expression of ARF10 is likely to have contributed to the improved regeneration ability.  相似文献   

16.
The adaptive significance of enzyme variation has been of central interest in population genetics. Yet, how natural selection operates on enzymes in the larger context of biochemical pathways has not been broadly explored. A basic expectation is that natural selection on metabolic phenotypes will target enzymes that control metabolic flux, but how adaptive variation is distributed among enzymes in metabolic networks is poorly understood. Here, we use population genetic methods to identify enzymes responding to adaptive selection in the pathways of central metabolism in Drosophila melanogaster and Drosophila simulans. We report polymorphism and divergence data for 17 genes that encode enzymes of 5 metabolic pathways that converge at glucose-6-phosphate (G6P). Deviations from neutral expectations were observed at five loci. Of the 10 genes that encode the enzymes of glycolysis, only aldolase (Ald) deviated from neutrality. The other 4 genes that were inconsistent with neutral evolution (glucose-6-phosphate dehydrogenase [G6pd]), phosphoglucomutase [Pgm], trehalose-6-phosphate synthetase [Tps1], and glucose-6phosphatase [G6pase] encode G6P branch point enzymes that catalyze reactions at the entry point to the pentose-phosphate, glycogenic, trehalose synthesis, and gluconeogenic pathways. We reconcile these results with population genetics theory and existing arguments on metabolic regulation and propose that the incidence of adaptive selection in this system is related to the distribution of flux control. The data suggest that adaptive evolution of G6P branch point enzymes may have special significance in metabolic adaptation.  相似文献   

17.
Geographic patterns of genetic differentiation have long been used to understand population history and to learn about the biological mechanisms of adaptation. Here we present an examination of genomic patterns of differentiation between northern and southern populations of Australian and North American Drosophila simulans, with an emphasis on characterizing signals of parallel differentiation. We report on the genomic scale of differentiation and functional enrichment of outlier SNPs. While, overall, signals of shared differentiation are modest, we find the strongest support for parallel differentiation in genomic regions that are associated with regulation. Comparisons to Drosophila melanogaster yield potential candidate genes involved in local adaptation in both species, providing insight into common selective pressures and responses. In contrast to D. melanogaster, in D. simulans we observe patterns of variation that are inconsistent with a model of temperate adaptation out of a tropical ancestral range, highlighting potential differences in demographic and colonization histories of this cosmopolitan species pair.  相似文献   

18.
MiRNAs bear an increasing number of functions throughout development and in the aging adult. Here we address their role in establishing sexually dimorphic traits and sexual identity in male and female Drosophila. Our survey of miRNA populations in each sex identifies sets of miRNAs differentially expressed in male and female tissues across various stages of development. The pervasive sex-biased expression of miRNAs generally increases with the complexity and sexual dimorphism of tissues, gonads revealing the most striking biases. We find that the male-specific regulation of the X chromosome is relevant to miRNA expression on two levels. First, in the male gonad, testis-biased miRNAs tend to reside on the X chromosome. Second, in the soma, X-linked miRNAs do not systematically rely on dosage compensation. We set out to address the importance of a sex-biased expression of miRNAs in establishing sexually dimorphic traits. Our study of the conserved let-7-C miRNA cluster controlled by the sex-biased hormone ecdysone places let-7 as a primary modulator of the sex-determination hierarchy. Flies with modified let-7 levels present doublesex-related phenotypes and express sex-determination genes normally restricted to the opposite sex. In testes and ovaries, alterations of the ecdysone-induced let-7 result in aberrant gonadal somatic cell behavior and non-cell-autonomous defects in early germline differentiation. Gonadal defects as well as aberrant expression of sex-determination genes persist in aging adults under hormonal control. Together, our findings place ecdysone and let-7 as modulators of a somatic systemic signal that helps establish and sustain sexual identity in males and females and differentiation in gonads. This work establishes the foundation for a role of miRNAs in sexual dimorphism and demonstrates that similar to vertebrate hormonal control of cellular sexual identity exists in Drosophila.  相似文献   

19.
Protein misfolding has a key role in several neurological disorders including Parkinson's disease. Although a clear mechanism for such proteinopathic diseases is well established when aggregated proteins accumulate in the cytosol, cell nucleus, endoplasmic reticulum and extracellular space, little is known about the role of protein aggregation in the mitochondria. Here we show that mutations in both human and fly PINK1 result in higher levels of misfolded components of respiratory complexes and increase in markers of the mitochondrial unfolded protein response. Through the development of a genetic model of mitochondrial protein misfolding employing Drosophila melanogaster, we show that the in vivo accumulation of an unfolded protein in mitochondria results in the activation of AMP-activated protein kinase-dependent autophagy and phenocopies of pink1 and parkin mutants. Parkin expression acts to clear mitochondria with enhanced levels of misfolded proteins by promoting their autophagic degradation in vivo, and refractory to Sigma P (ref(2)P), the Drosophila orthologue of mammalian p62, is a critical downstream effector of this quality control pathway. We show that in flies, a pathway involving pink1, parkin and ref(2)P has a role in the maintenance of a viable pool of cellular mitochondria by promoting organellar quality control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号