首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
Mate choice is considered an important influence in the evolution of mating signals and other sexual traits, and--since divergence in sexual traits causes reproductive isolation--it can be an agent of population divergence. The importance of mate choice in signal evolution can be evaluated by comparing male signal traits with female preference functions, taking into account the shape and strength of preferences. Specifically, when preferences are closed (favouring intermediate values), there should be a correlation between the preferred values and the trait means, and stronger preferences should be associated with greater preference-signal correspondence and lower signal variability. When preferences are open (favouring extreme values), signal traits are not only expected to be more variable, but should also be shifted towards the preferred values. We tested the role of female preferences in signal evolution in the Enchenopa binotata species complex of treehoppers, a clade of plant-feeding insects hypothesized to have speciated in sympatry. We found the expected relationship between signals and preferences, implicating mate choice as an agent of signal evolution. Because differences in sexual communication systems lead to reproductive isolation, the factors that promote divergence in female preferences--and, consequently, in male signals--may have an important role in the process of speciation.  相似文献   

2.
Variation in temperature can affect the expression of a variety of important fitness‐related behaviours, including those involved with mate attraction and selection, with consequences for the coordination of mating across variable environments. We examined how temperature influences the expression of male mating signals and female mate preferences—as well as the relationship between how male signals and female mate preferences change across temperatures (signal–preference temperature coupling)—in Enchenopa binotata treehoppers. These small plant‐feeding insects communicate using plantborne vibrations, and our field surveys indicate they experience significant natural variation in temperature during the mating season. We tested for signal–preference temperature coupling in four populations of E. binotata by manipulating temperature in a controlled laboratory environment. We measured the frequency of male signals—the trait for which females show strongest preference—and female peak preference—the signal frequency most preferred by females—across a range of biologically relevant temperatures (18°C–36°C). We found a strong effect of temperature on both male signals and female preferences, which generated signal–preference temperature coupling within each population. Even in a population in which male signals mismatched female preferences, the temperature coupling reinforces predicted directional selection across all temperatures. Additionally, we found similar thermal sensitivity in signals and preferences across populations even though populations varied in the mean frequency of male signals and female peak preference. Together, these results suggest that temperature variation should not affect the action of sexual selection via female choice, but rather should reinforce stabilizing selection in populations with signal–preference matches, and directional selection in those with signal–preference mismatches. Finally, we do not predict that thermal variation will disrupt the coordination of mating in this species by generating signal–preference mismatches at thermal extremes.  相似文献   

3.
Sexual selection is predicted to drive the coevolution of mating signals and preferences (mating traits) within populations, and could play a role in speciation if sexual isolation arises due to mating trait divergence between populations. However, few studies have demonstrated that differences in mating traits between populations result from sexual selection alone. Experimental evolution is a promising approach to directly examine the action of sexual selection on mating trait divergence among populations. We manipulated the opportunity for sexual selection (low vs. high) in populations of Drosophila pseudoobscura. Previous studies on these experimental populations have shown that sexual selection manipulation resulted in the divergence between sexual selection treatments of several courtship song parameters, including interpulse interval (IPI) which markedly influences male mating success. Here, we measure female preference for IPI using a playback design to test for preference divergence between the sexual selection treatments after 130 generations of experimental sexual selection. The results suggest that female preference has coevolved with male signal, in opposite directions between the sexual selection treatments, providing direct evidence of the ability of sexual selection to drive the divergent coevolution of mating traits between populations. We discuss the implications in the context sexual selection and speciation.  相似文献   

4.
The well-known phenotypic diversity of male sexual displays, and the high levels of genetic variation reported for individual display traits have generated the expectation that male display traits, and consequently male mating success, are highly evolvable. It has not been shown however that selection for male mating success, exerted by female preferences in an unmanipulated population, results in evolutionary change. Here, we tested the expectation that male mating success is highly evolvable in Drosophila bunnanda using an experimental evolution approach. Female D. bunnanda exhibit a strong, consistent preference for a specific combination of male cuticular hydrocarbons (CHCs). We used female preference to select for male mating success by propagating replicate populations from either attractive or unattractive males over 10 generations. Neither the combination of CHCs under sexual selection (the sexual signal) nor male mating success itself evolved. The lack of a response to selection was consistent with previous quantitative genetic experiments in D. bunnanda that demonstrated the virtual absence of genetic variance in the combination of CHCs under sexual selection. Persistent directional selection, such as applied by female mate choice, may erode genetic variance, resulting in multitrait evolutionary limits.  相似文献   

5.
Models of indirect (genetic) benefits sexual selection predict linkage disequilibria between genes that influence male traits and female preferences, owing to non-random mate choice or physical linkage. Such linkage disequilibria can accelerate the evolution of traits and preferences to exaggerated levels. Both theory and recent empirical findings on species recognition suggest that such linkage disequilibria may result from physical linkage or pleiotropy, but very little work has addressed this possibility within the context of sexual selection. We studied the genetic architecture of sexually selected traits by analyzing signals and preferences in an acoustic moth, Achroia grisella, in which males attract females with a train of ultrasound pulses and females prefer loud songs and a fast pulse rhythm. Both male signal characters and female preferences are repeatable and heritable traits. Moreover, female choice is based largely on male song, while males do not appear to provide direct benefits at mating. Thus, some genetic correlation between song and preference traits is expected. We employed a standard crossing design between inbred lines and used AFLP markers to build a linkage map for this species and locate quantitative trait loci (QTL) that influence male song and female preference. Our analyses mostly revealed QTLs of moderate strength that influence various male signal and female receiver traits, but one QTL was found that exerts a major influence on the pulse-pair rate of male song, a critical trait in female attraction. However, we found no evidence of specific co-localization of QTLs influencing male signal and female receiver traits on the same linkage groups. This finding suggests that the sexual selection process would proceed at a modest rate in A. grisella and that evolution toward exaggerated character states may be tempered. We suggest that this equilibrium state may be more the norm than the exception among animal species.  相似文献   

6.
Abstract Correlated evolution of mate signals and mate preference may be constrained if selection pressures acting on mate preference differ from those acting on mate signals. In particular, opposing selection pressures may act on mate preference and signals when traits have sexual as well as nonsexual functions. In the butterfly Colias philodice eriphyle , divergent selection on wing color across an elevational gradient in response to the thermal environment has led to increasing wing melanization at higher elevations. Wing color is also a long-range signal used by males in mate searching. We conducted experiments to test whether sexual selection on wing melanization via male mate choice acts in the same direction as natural selection on mate signals due to the thermal environment. We performed controlled mate choice experiments in the field over an elevational range of 1500 meters using decoy butterflies with different melanization levels. Also, we obtained a more direct estimate of the relation between wing color and sexual selection by measuring mating success in wild-caught females. Both our experiments showed that wing melanization is an important determinant of female mating success in C. p. eriphyle . However, a lack of elevational variation in male mate preference prevents coevolution of mate signals and mate preference, as males at all elevations prefer less-melanized females. We suggest that this apparently maladaptive mate choice may be maintained by differences in detectability between the morphs or by preservation of species recognition.  相似文献   

7.
Perceptual biases explain the origin and evolution of female preference in many species. Some responses that mediate mate choice, however, may have never been used in nonmating contexts. In the fiddler crab, Uca mjoebergi, mate‐searching females prefer faster wave rates and leading wave; however, it remains unclear whether such responses evolved in a mating context (i.e., the preference has effect on the fitness of the female and her offspring that arise from mating with a particular male) or a nonmating contexts (i.e., a female obtains direct benefits through selecting the male with a more detectable trait). Here, we compared the preferences of mate‐searching with those of ovigerous females that are searching for a burrow and do not concern about male “quality.” Results showed that as both mate‐searching and ovigerous females preferentially approached robotic males with faster wave rates. This suggests that wave rate increases detectability/locatability of males, but the mating preference for this trait is unlikely to evolve in the mating context (although it may currently function in mate choice), as it does not provide fitness‐related benefit to females or her offspring. Wave leadership, in contract, was attractive to mate‐searching females, but not ovigerous females, suggesting that female preference for leadership evolves because wave leadership conveys information about male quality. We provide not only an empirical evidence of sensory biases (in terms of the preference for faster wave), but the first experimental evidence that mating context can be the only selection force that mediates the evolution of male sexual traits and female preference (in terms of the preference for leading wave).  相似文献   

8.
Studies of mate choice evolution tend to focus on how female mating preferences are acquired and how they select for greater elaboration of male traits. By contrast, far less is known about how female preferences might be lost or reversed. In swordtail fish Xiphophorus, female preference for the sword ornament is an ancestral trait. Xiphophorus birchmanni, however, is one species that has secondarily lost the sword. Using synthetic animation playback of "virtual" males, we found that female X. birchmanni preferred a swordless conspecific over a sworded heterospecific. Moreover, when offered the choice between a conspecific without a sword and one with a digitally attached sword, females preferred the former. These results suggest female preferences need not always select for elaboration of male traits, and they provide a plausible explanation for the lack of introgression of a sexual trait in a naturally occurring hybrid zone.  相似文献   

9.
Costly female mating preferences for purely Fisherian male traits (i.e. sexual ornaments that are genetically uncorrelated with inherent viability) are not expected to persist at equilibrium. The indirect benefit of producing ‘sexy sons’ (Fisher process) disappears: in some models, the male trait becomes fixed; in others, a range of male trait values persist, but a larger trait confers no net fitness advantage because it lowers survival. Insufficient indirect selection to counter the direct cost of producing fewer offspring means that preferences are lost. The only well‐cited exception assumes biased mutation on male traits. The above findings generally assume constant direct selection against female preferences (i.e. fixed costs). We show that if mate‐sampling costs are instead derived based on an explicit account of how females acquire mates, an initially costly mating preference can coevolve with a male trait so that both persist in the presence or absence of biased mutation. Our models predict that empirically detecting selection at equilibrium will be difficult, even if selection was responsible for the location of the current equilibrium. In general, it appears useful to integrate mate sampling theory with models of genetic consequences of mating preferences: being explicit about the process by which individuals select mates can alter equilibria.  相似文献   

10.
The costs of choice in sexual selection   总被引:15,自引:0,他引:15  
In Fisher's model of sexual selection female mating preferences are not subject to direct selection but evolve purely because they are genetically correlated with the favoured male trait. But when female choice is costly relative to random mating, for example in energy, time or predation risks, the evolution of female mating preference is subject also to direct selection. With costly female choice the set or line of equilibria found in models of Fisher's process no longer exists. On the line the male trait is under zero net selection, and there is no advantage for a female choosing a male with a more exaggerated character. Therefore any cost to choice causes choosiness to decline. In turn this lowers the strength of sexual selection and the male trait declines as well. So when Fisher's process is the sole force of sexual selection and female choice is costly, only transitory increases in female choice and the preferred male trait are possible. It has often been claimed that exaggerated male characters act as markers or revealers of the genetic quality of potential mates. If females choose their mates using traits that correlate with heritable viability differences then stable exaggeration of both female choice and the preferred male character is possible, even when female choice is costly. The offspring of choosy females have not only a Fisherian reproductive advantage but also greater viability. This suggests that in species with exaggerated male ornamentation, in which female choice is costly, it is likely that female mate choice will be for traits that correlate with male genetic quality.  相似文献   

11.
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased (‘polyandry’) or decreased (‘monogamy’) sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.  相似文献   

12.
Selection on advertisement signals arises from interacting sources including female choice, male–male competition, and the communication channel (i.e., the signaling environment). To identify the contribution of individual sources of selection, we used previously quantified relationships between signal traits and each putative source to predict relationships between signal variation and fitness in Enchenopa binotata treehoppers (Hemiptera: Membracidae). We then measured phenotypic selection on signals and compared predicted and realized relationships between signal traits and mating success. We recorded male signals, then measured lifetime mating success at two population densities in a realistic environment in which sources of selection could interact. We identified which sources best predicted the relationship between signal variation and mating success using a multiple regression approach. All signal traits were under selection in at least one of the two breeding seasons measured, and in some cases selection was variable between years. Female preference was the strongest source of selection shaping male signals. The E. binotata species complex is a model of ecological speciation initiated by host shifts. Signal and preference divergence contribute to behavioral isolation within the complex, and the finding that female mate preferences drive signal evolution suggests that speciation in this group results from both ecological divergence and sexual selection.  相似文献   

13.
Sexual selection acting on small initial differences in mating signals and mate preferences can enhance signal–preference codivergence and reproductive isolation during speciation. However, the origin of initial differences in sexual traits remains unclear. We asked whether biotic environments, a source of variation in sexual traits, may provide a general solution to this problem. Specifically, we asked whether genetic variation in biotic environments provided by host plants can result in signal–preference phenotypic covariance in a host‐specific, plant‐feeding insect. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess patterns of variation in male mating signals and female mate preferences induced by genetic variation in host plants. We employed a novel implementation of a quantitative genetics method, rearing field‐collected treehoppers on a sample of naturally occurring replicated host plant clone lines. We found remarkably high signal–preference covariance among host plant genotypes. Thus, genetic variation in biotic environments influences the sexual phenotypes of organisms living on those environments in a way that promotes assortative mating among environments. This consequence arises from conditions likely to be common in nature (phenotypic plasticity and variation in biotic environments). It therefore offers a general answer to how divergent sexual selection may begin.  相似文献   

14.
Genetic models of maternal effects and models of mate choice have focused on the evolutionary effects of variation in parental quality. There have been, however, few attempts to combine these into a single model for the evolution of sexually selected traits. We present a quantitative genetic model that considers how male and female parental quality (together or separately) affect the expression of a sexually selected offspring trait. We allow female choice of males based on this parentally affected trait and examine the evolution of mate choice, parental quality and the indicator trait. Our model reveals a number of consequences of maternal and paternal effects. (1) The force of sexual selection owing to adaptive mate choice can displace parental quality from its natural selection optimum. (2) The force of sexual selection can displace female parental quality from its natural selection optimum even when nonadaptive mate choice occurs (e.g. runaway sexual selection), because females of higher parental quality produce more attractive sons and these sons counterbalance the loss in fitness owing to over-investment in each offspring. (3) Maternal and paternal effects can provide a source of genetic variation for offspring traits, allowing evolution by sexual selection even when those traits do not show direct genetic variation (i.e. are not heritable). (4) The correlation between paternal investment and the offspring trait influenced by the parental effects can result in adaptive mate choice and lead to the elaboration of both female preference and the male sexually selected trait. When parental effects exist, sexual selection can drive the evolution of parental quality when investment increases the attractiveness of offspring, leading to the elaboration of indicator traits and higher than expected levels of parental investment.  相似文献   

15.
Mate choice is often based on multiple signal traits and can be influenced by context-dependent factors. Understanding the importance of these signals and factors can be difficult because they are often correlated and might interact. Here, we experimentally disentangle the effects of familiarity, kinship, pattern rarity, and ornament patterns on mate choice in guppies. We estimate whether these factors alter sexual selection on six phenotypic traits known to influence male attractiveness. Rarity of the male's phenotype is the only context-dependent factor that significantly influenced female mating decisions, with common patterns being least attractive. This preference for rare male patterns is a source of negative frequency-dependent selection that may contribute to maintaining the extreme polymorphism in male guppy coloration. Neither visual familiarity nor relatedness between mating partners had any significant effect on mate choice decisions. There was significant linear and nonlinear sexual selection on ornamental traits, but this was not influenced by the context-dependent measures. Our approach highlights the complexity of female mate choice and sexual selection, as well as the value of combining multifactorial experiments with multivariate selection analyses. Our study shows that both negative frequency-dependent selection and disruptive selection contribute to the maintenance of extreme polymorphism in guppies.  相似文献   

16.
Because females often mate with multiple males, it is critical to expand our view of sexual selection to encompass pre-, peri- and post-copulatory episodes to understand how selection drives trait evolution. In Photinus fireflies, females preferentially respond to males based on their bioluminescent courtship signals, but previous work has shown that male paternity success is negatively correlated with flash attractiveness. Here, we experimentally manipulated both the attractiveness of the courtship signal visible to female Photinus greeni fireflies before mating and male nuptial gift size to determine how these traits might each influence mate acceptance and paternity share. We also measured pericopulatory behaviours to examine their influence on male reproductive success. Firefly males with larger spermatophores experienced dual benefits in terms of both higher mate acceptance and increased paternity share. We found no effect of courtship signal attractiveness or pericopulatory behaviour on male reproductive success. Taken together with previous results, this suggests a possible trade-off for males between producing an attractive courtship signal and investing in nuptial gifts. By integrating multiple episodes of sexual selection, this study extends our understanding of sexual selection in Photinus fireflies and provides insight into the evolution of male traits in other polyandrous species.  相似文献   

17.
Sexual selection can cause evolution in traits that affect mating success, and it has thus been implicated in the evolution of human physical and behavioural traits that influence attractiveness. We use a large sample of identical and nonidentical female twins to test the prediction from mate choice models that a trait under sexual selection will be positively genetically correlated with preference for that trait. Six of the eight preferences we investigated, i.e. height, hair colour, intelligence, creativity, exciting personality, and religiosity, exhibited significant positive genetic correlations with the corresponding traits, while the personality measures ‘easy going’ and ‘kind and understanding’ exhibited no phenotypic or genetic correlation between preference and trait. The positive results provide important evidence consistent with the involvement of sexual selection in the evolution of these human traits.  相似文献   

18.
Evolutionary theories of aging state that the force of natural selection declines with age, resulting in trait senescence. However, sexual selection theory predicts that costly traits that signal mate value should increase in expression as survival prospects decline. Mortality rates and fertility tend to show strong signatures of senescence, whereas sexual signaling traits increase with age, but how the expression of traits such as whole-organism performance measures that are subject to both sexual and nonsexual selection should change with age is unclear. We examined the effects of both a key life-history event (mating) and diet quality (male and female optimal diets) on aging in two whole-organism performance traits (bite force and jump take-off velocity) in male and female Teleogryllus commodus crickets. We found no evidence for diet effects on any of the measured traits. Aging effects were more evident in females than in males for both jumping and biting, and constitute a mix of senescence and terminal investment patterns depending on sex/mating class. Sex and mating therefore have important implications for resource allocation to performance traits, and hence for aging of those traits, and interactions between these two factors can result in complex changes in trait expression over individual lifetimes.  相似文献   

19.
The unique aspects of speciation and divergence in peripheral populations have long sparked much research. Unidirectional migration, received by some peripheral populations, can hinder the evolution of distinct differences from their founding populations. Here, we explore the effects that sexual selection, long hypothesized to drive the divergence of distinct traits used in mate choice, can play in the evolution of such traits in a partially isolated peripheral population. Using population genetic continent‐island models, we show that with phenotype matching, sexual selection increases the frequency of an island‐specific mating trait only when female preferences are of intermediate strength. We identify regions of preference strength for which sexual selection can instead cause an island‐specific trait to be lost, even when it would have otherwise been maintained at migration‐selection balance. When there are instead separate preference and trait loci, we find that sexual selection can lead to low trait frequencies or trait loss when female preferences are weak to intermediate, but that sexual selection can increase trait frequencies when preferences are strong. We also show that novel preference strengths almost universally cannot increase, under either mating mechanism, precluding the evolution of premating isolation in peripheral populations at the early stages of species divergence.  相似文献   

20.
Females of many species are frequently courted by promiscuous males of their own and other closely related species. Such mating interactions may impose strong selection on female mating preferences to favor trait values in conspecific males that allow females to discriminate them from their heterospecific rivals. We explore the consequences of such selection in models of the evolution of female mating preferences when females must interact with heterospecific males from which they are completely postreproductively isolated. Specifically, we allow the values of both the most preferred male trait and the tolerance of females for males that deviate from this most preferred trait to evolve. Also, we consider situations in which females base their mating decisions on multiple male traits and must interact with males of multiple species. Females will rapidly differentiate in preference when they sometimes mistake heterospecific males for suitable mates, and the differentiation of female preference will select for conspecific male traits to differentiate as well. In most circumstances, this differentiation continues indefinitely, but slows substantially once females are differentiated enough to make mistakes rare. Populations of females with broader preference functions (i.e., broader tolerance for males with trait values that deviate from females' most preferred values) will evolve further to differentiate if the shape of the function cannot evolve. Also, the magnitude of separation that evolves is larger and achieved faster when conspecific males have lower relative abundance. The direction of differentiation is also very sensitive to initial conditions if females base their mate choices on multiple male traits. We discuss how these selection pressures on female mate choice may lead to speciation by generating differentiation among populations of a progenitor species that experiences different assemblages of heterospecifics. Opportunities for differentiation increase as the number of traits involved in mate choice increase and as the number of species involved increases. We suggest that this mode of speciation may have been particularly prevalent in response to the cycles of climatic change throughout the Quaternary that forced the assembly and disassembly of entire communities on a continentwide basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号