首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Footpad infection of C3HeB/FeJ mice with Leishmania amazonensis leads to chronic lesions accompanied by large parasite loads. Co-infecting these animals with L. major leads to induction of an effective Th1 immune response that can resolve these lesions. This cross-protection can be recapitulated in vitro by using immune cells from L. major-infected animals to effectively activate L. amazonensis-infected macrophages to kill the parasite. We have shown previously that the B cell population and their IgG2a antibodies are required for effective cross-protection. Here we demonstrate that, in contrast to L. major, killing L. amazonensis parasites is dependent upon FcRγ common-chain and NADPH oxidase-generated superoxide from infected macrophages. Superoxide production coincided with killing of L. amazonensis at five days post-activation, suggesting that opsonization of the parasites was not a likely mechanism of the antibody response. Therefore we tested the hypothesis that non-specific immune complexes could provide a mechanism of FcRγ common-chain/NADPH oxidase dependent parasite killing. Macrophage activation in response to soluble IgG2a immune complexes, IFN-γ and parasite antigen was effective in significantly reducing the percentage of macrophages infected with L. amazonensis. These results define a host protection mechanism effective during Leishmania infection and demonstrate for the first time a novel means by which IgG antibodies can enhance killing of an intracellular pathogen.  相似文献   

3.
Leishmania chagasi and Leishmania amazonensis are the etiologic agents of different clinical forms of human leishmaniasis in South America. In an attempt to select candidate antigens for a vaccine protecting against different Leishmania species, the efficacy of vaccination using Leishmania ribosomal proteins and saponin as adjuvant was examined in BALB/c mice against challenge infection with both parasite species. Mice vaccinated with parasite ribosomal proteins purified from Leishmania infantum plus saponin showed a specific production of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with L. infantum ribosomal proteins. Vaccinated mice showed a reduction in the liver and spleen parasite burdens after L. chagasi infection. After L. amazonensis challenge, vaccinated mice showed a decrease of the dermal pathology and a reduction in the parasite loads in the footpad and spleen. In both models, protection was correlated to an IL-12-dependent production of IFN-γ by CD4+ and CD8+ T cells that activate macrophages for the synthesis of NO. In the protected mice a decrease in the parasite-mediated IL-4 and IL-10 responses was also observed. In mice challenged with L. amazonensis, lower levels of anti-parasite-specific antibodies were detected. Thus, Leishmania ribosomal proteins plus saponin fits the requirements to compose a pan-Leishmania vaccine.  相似文献   

4.
Leishmania amazonensis, the causal agent of diffuse cutaneous leishmaniasis, is known for its ability to modulate the host immune response. Because a relationship between ectonucleotidase activity and the ability of Leishmania to generate injury in C57BL/6 mice has been demonstrated, in this study we evaluated the involvement of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of L. amazonensis in the process of infection of J774-macrophages. Our results show that high-activity parasites show increased survival rate in LPS/IFN-γ-activated cells, by inhibiting the host-cell NO production. Conversely, inhibition of E-NTPDase activity reduces the parasite survival rates, an effect associated with increased macrophage NO production. E-NTPDase activity generates substrate for the production of extracellular adenosine, which binds to A2B receptors and reduces IL-12 and TNF-α produced by activated macrophages, thus inhibiting NO production. These results indicate that E-NTPDase activity is important for survival of L. amazonensis within macrophages, showing the role of the enzyme in modulating macrophage response and lower NO production, which ultimately favors infection. Our results point to a new mechanism of L. amazonensis infection that may pave the way for the development of new treatments for this neglected disease.  相似文献   

5.
All prokaryotes and eukaryotes, including parasites, release extracellular vesicles or exosomes that contain selected proteins, lipids, nucleic acids, glycoconjugates, and metabolites. Leishmania exosomes are highly enriched in small RNAs derived from the rRNAs and tRNAs of the protozoan parasite species. Here, using plasma exosomes isolated by a kit and next-generation sequencing, we report the detection of fragments of parasite-derived rRNAs and tRNAs in the peripheral plasma samples of mice experimentally infected with Leishmania donovani and Leishmania amazonensis, the causative agents of Old World visceral leishmaniasis and New World disseminated cutaneous leishmaniasis, respectively. Detected RNA molecules of 28S rRNA, 5.8S rRNA, tRNA-Glu, and tRNA-Thr were common to both plasma samples of mice inoculated with L. donovani and L. amazonensis, whereas tRNA-Ile and tRNA-Trp were only detected in L. amazonensis-infected mice. The detected rRNAs and tRNA isotypes were matched with the exosomal components reported in a previous key study. Our preliminary results suggested that parasite-derived small RNAs were circulating in the blood of mice infected with Leishmania species, providing a better understanding of the roles of exosomal components in leishmaniasis and also new insights into exosome-based biomarkers for Leishmania infection.  相似文献   

6.
Leishmaniasis is a neglected disease produced by the intracellular protozoan parasite Leishmania. In the present study, we show that LABCG2, a new ATP-binding cassette half-transporter (ABCG subfamily) from Leishmania, is involved in parasite virulence. Down-regulation of LABCG2 function upon expression of an inactive mutant version of this half-transporter (LABCG2K/M) is shown to reduce the translocation of short-chain analogues of phosphatidylserine (PS). This dominant-negative phenotype is specific for the headgroup of the phospholipid, as the movement of phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine or sphingomyelin is not affected. In addition, promastigotes expressing LABCG2K/M expose less endogenous PS in the stationary phase than control parasites. Transient exposure of PS at the outer leaflet of the plasma membrane is known to be one of the mechanisms used by Leishmania to infect macrophages and to silence their immune response. Stationary phase/metacyclic promastigotes expressing LABCG2K/M are less infective for macrophages and show decreased pathogenesis in a mouse model of cutaneous leishmaniasis. Thus, mice infected with parasites expressing LABCG2K/M did not develop any lesion and showed significantly lower inflammation and parasite burden than mice infected with control parasites. Our results indicate that LABCG2 function is required for the externalization of PS in Leishmania promastigotes, a process that is involved in the virulence of the parasite.  相似文献   

7.
Visceral leishmaniasis is a vector-borne disease caused by an obligate intra-macrophage protozoan parasite Leishmania donovani. The molecular mechanisms involved in internalization of Leishmania are still poorly understood. Amphotericin B and its formulations are considered as the best existing drugs against visceral leishmaniasis and are being increasingly used. The reason for its antileishmanial activity is believed to be its ability to bind ergosterol found in parasite membranes. In case of in vivo amphotericin B treatment, both host macrophages and parasites are exposed to amphotericin B. The effect of amphotericin B treatment could therefore be due to a combination of its interaction with both sterols i.e., ergosterol of Leishmania and cholesterol of host macrophages. We report here that cholesterol complexation by amphotericin B markedly inhibits binding of L. donovani promastigotes to macrophages. These results represent one of the first reports on the effect of amphotericin B on the binding of Leishmania parasites to host macrophages. Importantly, these results offer the possibility of reevaluating the mechanism behind the effectiveness of current therapeutic strategies that employ sterol-complexing agents such as amphotericin B to treat leishmaniasis.  相似文献   

8.

Background

Human leishmaniasis is caused by more than 20 Leishmania species and has a wide range of symptoms. Our recent studies have demonstrated the essential role of sphingolipid degradation in the virulence of Leishmania (Leishmania) major, a species responsible for localized cutaneous leishmaniasis in the Old World. In this study, we investigated the function of sphingolipid degradation in Leishmania (Leishmania) amazonensis, an etiological agent of localized and diffuse cutaneous leishmaniasis in South America.

Methodology/Principal Findings

First, we identified the enzyme LaISCL which is responsible for sphingolipid degradation in L. amazonensis. Primarily localized in the mitochondrion, LaISCL shows increased expression as promastigotes progress from replicative log phase to non-replicative stationary phase. To study its function, null mutants of LaISCL (Laiscl) were generated by targeted gene deletion and complemented through episomal gene add-back. In culture, loss of LaISCL leads to hypersensitivity to acidic pH and poor survival in murine macrophages. In animals, Laiscl mutants exhibit severely attenuated virulence towards C57BL6 mice but are fully infective towards BALB/c mice. This is drastically different from wild type L. amazonensis which cause severe pathology in both BALB/c and C57BL 6 mice.

Conclusions/Significance

A single enzyme LaISCL is responsible for the turnover of sphingolipids in L. amazonensis. LaISCL exhibits similar expression profile and biochemical property as its ortholog in L. major. Deletion of LaISCL reduces the virulence of L. amazonensis and the outcome of Laiscl-infection is highly dependent on the host''s genetic background. Therefore, compared to L. major, the role of sphingolipid degradation in virulence is substantially different in L. amazonensis. Future studies may reveal whether sphingolipid degradation is required for L. amazonensis to cause diffuse cutaneous infections in humans.  相似文献   

9.
A 500 bp fragment encoding an isoform of cysteine proteinase from Leishmania (Leishmania) amazonensis was subcloned and expressed in the pHis vector, resulting in a recombinant protein of 24 kDa, rLacys24. In Western blots of L. (L.) amazonensis extracts, antibodies directed to rLacys24 recognized a cysteine proteinase isoform of 30 kDa. Analysis by fluorescence-activated cell sorter showed a significantly higher expression of CD8+ lymphocytes in animals immunized with rLacys24 plus CFA, whereas a low expression of CD4+ lymphocytes was observed in these animals. The cytotoxicity of lymphocytes isolated from mice immunized with rLacys24 plus CFA on L. (L.) amazonensis-infected macrophages was significantly higher than that observed in the presence of lymphocytes from control animals. Immunization of BALB/c mice with rLacys24 plus CFA resulted in a low but significant decrease of foot lesions after challenge with L. (L.) amazonensis compared to those exhibited by control mice.  相似文献   

10.
All natural Leishmania infections start in the skin; however, little is known of the contribution made by the sand fly vector to the earliest events in mammalian infection, especially in inflamed skin that can rapidly kill invading parasites. During transmission sand flies regurgitate a proteophosphoglycan gel synthesized by the parasites inside the fly midgut, termed promastigote secretory gel (PSG). Regurgitated PSG can exacerbate cutaneous leishmaniasis. Here, we show that the amount of Leishmania mexicana PSG regurgitated by Lutzomyia longipalpis sand flies is proportional to the size of its original midgut infection and the number of parasites transmitted. Furthermore, PSG could exacerbate cutaneous L. mexicana infection for a wide range of doses (10–10,000 parasites) and enhance infection by as early as 48 hours in inflamed dermal air pouches. This early exacerbation was attributed to two fundamental properties of PSG: Firstly, PSG powerfully recruited macrophages to the dermal site of infection within 24 hours. Secondly, PSG enhanced alternative activation and arginase activity of host macrophages, thereby increasing L-arginine catabolism and the synthesis of polyamines essential for intracellular parasite growth. The increase in arginase activity promoted the intracellular growth of L. mexicana within classically activated macrophages, and inhibition of macrophage arginase completely ablated the early exacerbatory properties of PSG in vitro and in vivo. Thus, PSG is an essential component of the infectious sand fly bite for the early establishment of Leishmania in skin, which should be considered when designing and screening therapies against leishmaniasis.  相似文献   

11.
The Leishmania plasma membrane transporter Leishmania Iron Regulator 1 (LIR1) facilitates iron export and is required for parasite virulence. By modulating macrophage iron content, we investigated the host site where LIR1 regulates Leishmania amazonensis infectivity. In bone marrow-derived macrophages, LIR1 null mutants demonstrated a paradoxical increase in virulence during infections in heme-depleted media, while wild-type growth was inhibited under the same conditions. Loading the endocytic pathway of macrophages with cationized ferritin prior to infection reversed the effect of heme depletion on both strains. Thus, LIR1 contributes to Leishmania virulence by protecting the parasites from toxicity resulting from iron accumulation inside parasitophorous vacuoles.  相似文献   

12.

Background

Studies on the role of neutrophils in Leishmania infection were mainly performed with L. (L) major, whereas less information is available for L. (L) amazonensis. Previous results from our laboratory showed a large infiltrate of neutrophils in the site of infection in a mouse strain resistant to L. (L.) amazonensis (C3H/HePas). In contrast, the susceptible strain (BALB/c) displayed a predominance of macrophages harboring a high number of amastigotes and very few neutrophils. These findings led us to investigate the interaction of inflammatory neutrophils with L. (L.) amazonensis-infected macrophages in vitro.

Methodology/Principal Findings

Mouse peritoneal macrophages infected with L. (L.) amazonensis were co-cultured with inflammatory neutrophils, and after four days, the infection was quantified microscopically. Data are representative of three experiments with similar results. The main findings were 1) intracellular parasites were efficiently destroyed in the co-cultures; 2) the leishmanicidal effect was similar when cells were obtained from mouse strains resistant (C3H/HePas) or susceptible (BALB/c) to L. (L.) amazonensis; 3) parasite destruction did not require contact between infected macrophages and neutrophils; 4) tumor necrosis factor alpha (TNF-α), neutrophil elastase and platelet activating factor (PAF) were involved with the leishmanicidal activity, and 5) destruction of the parasites did not depend on generation of oxygen or nitrogen radicals, indicating that parasite clearance did not involve the classical pathway of macrophage activation by TNF-α, as reported for other Leishmania species.

Conclusions/Significance

The present results provide evidence that neutrophils in concert with macrophages play a previously unrecognized leishmanicidal effect on L. (L.) amazonensis. We believe these findings may help to understand the mechanisms involved in innate immunity in cutaneous infection by this Leishmania species.  相似文献   

13.
14.
Macrophages are the major host cells for Leishmania parasites, and determine the fate of infection by either limiting or allowing growth of the parasites, resulting in development or control of leishmaniasis, respectively. They also play important roles in causing pathological outcomes during Leishmania infection. The pathophysiology is complex and include a wide variety of molecular and cellular responses including enhancement of inflammatory responses by releasing cytokines, causing damages to surrounding cells by reactive oxygen species, or disordered phagocytosis of other cells. It is of note that disease severity in leishmaniasis sometimes does not correlate with parasite burdens, indicating that pathological roles of macrophages are not necessarily linked to their parasite-killing activities that are often defined by M1/M2 status. Here, we review the roles of macrophages in leishmaniasis with a focus on their pathological mechanisms in disease development.  相似文献   

15.
Proteases are a ubiquitous group of enzymes that play key roles in the life cycle of parasites, in the host-parasite relationship, and in the pathogenesis of parasitic diseases. Furthermore, proteases are druggable targets for the development of new anti-parasitic therapy. The subtilisin protease (SUB; Clan SB, family S8) of Leishmania donovani was cloned and found to possess a unique catalytic triad. This gene was then deleted by gene knock-out, which resulted in reduced ability by the parasite to undergo promastigote to amastigote differentiation in vitro. Electron microscopy of SUB knock-out amastigotes revealed abnormal membrane structures, retained flagella, and increased binucleation. SUB-deficient Leishmania displayed reduced virulence in both hamster and murine infection models. Histology of spleens from SUB knock-out-infected hamsters revealed the absence of psammoma body calcifications indicative of the granulomatous lesions that occur during Leishmania infection. To delineate the specific role of SUB in parasite physiology, two-dimensional gel electrophoresis was carried out on SUB−/− versus wild-type parasites. SUB knock-out parasites showed altered regulation of the terminal peroxidases of the trypanothione reductase system. Leishmania and other trypanosomatids lack glutathione reductase, and therefore rely on the novel trypanothione reductase system to detoxify reactive oxygen intermediates and to maintain redox homeostasis. The predominant tryparedoxin peroxidases were decreased in SUB−/− parasites, and higher molecular weight isoforms were present, indicating altered processing. In addition, knock-out parasites showed increased sensitivity to hydroperoxide. These data suggest that subtilisin is the maturase for tryparedoxin peroxidases and is necessary for full virulence.  相似文献   

16.
Leishmaniasis chemotherapy is a bottleneck in disease treatment. Although available, chemotherapy is limited, toxic, painful, and does not lead to parasite clearance, with parasite resistance also being reported. Therefore, new therapeutic options are being investigated, such as plant-derived anti-parasitic compounds. Amentoflavone is the most common biflavonoid in the Selaginella genus, and its antileishmanial activity has already been described on Leishmania amazonensis intracellular amastigotes but its direct action on the parasite is controversial. In this work we demonstrate that amentoflavone is active on L. amazonensis promastigotes (IC50 = 28.5 ± 2.0 μM) and amastigotes. Transmission electron microscopy of amentoflavone-treated promastigotes showed myelin-like figures, autophagosomes as well as enlarged mitochondria. Treated parasites also presented multiple lipid droplets and altered basal body organization. Similarly, intracellular amastigotes presented swollen mitochondria, membrane fragments in the lumen of the flagellar pocket as well as autophagic vacuoles. Flow cytometric analysis after TMRE staining showed that amentoflavone strongly decreased mitochondrial membrane potential. In silico analysis shows that amentoflavone physic-chemical, drug-likeness and bioavailability characteristics suggest it might be suitable for oral administration. We concluded that amentoflavone presents a direct effect on L. amazonensis parasites, causing mitochondrial dysfunction and parasite killing. Therefore, all results point for the potential of amentoflavone as a promising candidate for conducting advanced studies for the development of drugs against leishmaniasis.  相似文献   

17.

Background

Chemotherapy for leishmaniasis, a disease caused by Leishmania parasites, is expensive and causes side effects. Furthermore, parasite resistance constitutes an increasing problem, and new drugs against this disease are needed. In this study, we examine the effect of the compound 8,10,18-trihydroxy-2,6-dolabelladiene (Dolabelladienetriol), on Leishmania growth in macrophages. The ability of this compound to modulate macrophage function is also described.

Methodology/Principal Findings

Leishmania-infected macrophages were treated with Dolabelladienetriol, and parasite growth was measured using an infectivity index. Nitric oxide (NO), TNF-α and TGF-β production were assayed in macrophages using specific assays. NF-kB nuclear translocation was analyzed by western blot. Dolabelladienetriol inhibited Leishmania in a dose-dependent manner; the IC50 was 44 µM. Dolabelladienetriol diminished NO, TNF-α and TGF-β production in uninfected and Leishmania-infected macrophages and reduced NF-kB nuclear translocation. Dolabelladienetriol inhibited Leishmania infection even when the parasite growth was exacerbated by either IL-10 or TGF-β. In addition, Dolabelladienetriol inhibited Leishmania growth in HIV-1-co-infected human macrophages.

Conclusion

Our results indicate that Dolabelladienetriol significantly inhibits Leishmania in macrophages even in the presence of factors that exacerbate parasite growth, such as IL-10, TGF-β and HIV-1 co-infection. Our results suggest that Dolabelladienetriol is a promising candidate for future studies regarding treatment of leishmaniasis, associated or not with HIV-1 infection.  相似文献   

18.
Casein kinase 1 (CK1) plays an important role in eukaryotic signaling pathways, and their substrates include key regulatory proteins involved in cell differentiation, proliferation and chromosome segregation. The Leishmania genome encodes six potential CK1 isoforms, of which five have orthologs in other trypanosomatidae. Leishmania donovani CK1 isoform 4 (Ldck1.4, orthologous to LmjF27.1780) is unique to Leishmania and contains a putative secretion signal peptide. The full-length gene and three shorter constructs were cloned and expressed in E. coli as His-tag proteins. Only the full-length 62.3 kDa protein showed protein kinase activity indicating that the N-terminal and C-terminal domains are essential for protein activity. LdCK1.4-FLAG was stably over expressed in L. donovani, and shown by immunofluorescence to be localized primarily in the cytosol. Western blotting using anti-FLAG and anti-CK1.4 antibodies showed that this CK1 isoform is expressed and secreted by promastigotes. Over expression of LdCK1.4 had a significant effect on promastigote growth in culture with these parasites growing to higher cell densities than the control parasites (wild-type or Ld:luciferase, P<0.001). Analysis by flow cytometry showed a higher percentage, ∼4–5-fold, of virulent metacyclic promastigotes on day 3 among the LdCK1.4 parasites. Finally, parasites over expressing LdCK1.4 gave significantly higher infections of mouse peritoneal macrophages compared to wild-type parasites, 28.6% versus 6.3%, respectively (p = 0.0005). These results suggest that LdCK1.4 plays an important role in parasite survival and virulence. Further studies are needed to validate CK1.4 as a therapeutic target in Leishmania.  相似文献   

19.
Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self‐healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis‐infected macrophages also show reduced directional migration in response to the chemokine MCP‐1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F‐actin turnover frequency in L. amazonensis‐infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane–extracellular matrix interactions.  相似文献   

20.
Autophagy is the primary mechanism of degradation of cellular proteins and at least two functions can be attributed to this biological phenomenon: increased nutrient supply via recycling of the products of autophagy under nutrient starvation; and antimicrobial response involved in the innate immune system. Many microorganisms induce host cell autophagy and it has been proposed as a pathway by which parasites compete with the host cell for limited resources. In this report we provide evidence that the intracellular parasite Leishmania amazonensis induces autophagy in macrophages. Using western blotting, the LC3II protein, a marker of autophagosomes, was detected in cell cultures with a high infection index. Macrophages infected with L. amazonensis were examined by transmission electronic microscopy, which revealed enlarged myelin-like structures typical late autophagosome and autolysosome. Other evidence indicating autophagy was Lysotracker red dye uptake by the macrophages. Autophagy also occurs in the leishmaniasis skin lesions of BALB/c mice, detected by immunohistochemistry with anti-LC3II antibody. In this study, autophagy inhibitor 3-methyladenine (3MA) reduced the infection index, while autophagy inductors, such as rapamycin or starvation, did not alter the infection index in cultivated macrophages, suggesting that one aspect of the role of autophagy could be the provision of nutritive support to the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号